Marshland communities and cultural landscapes from the Bronze Age to present day

By Christopher Evans & Ian Hodder
Marshland communities
and cultural landscapes

By Christopher Evans & Ian Hodder

With contributions from
Mark Beech, Pamela Braddock, Richard Darrah, Megan Dennis, Jon Etté,
Charles French, Andrew Herne, Lorraine Higbee, J.D. Hill, Caroline Humphrey,
Gillian Hunt, Nicholas James, Glynis Jones, Paul Lane, Steven Laurie,
Frances Lee, Anthony Legge, Gavin Lucas, Donald Mackreth, Peter Marshall,
Andrew Mawson, Paul Middleton, Robert Middleton, Peter Murphy,
Sylvia Peglar, Judith Pettigrew, Joshua Pollard, Francis Pryor, Richard Reece,
Peter Reeves, Dale Serjeantson, Paul Shand, Jane Sidell, Janet Simms,
Pamela Smith, Marie Louise Stig Sørensen, Christopher Stevens,
Yarjung Kromchain Tamu, Maisie Taylor, Lee White, David Williams,
Gillian Yates & Ezra Zubrow

Principal illustrations by
Crane Begg, Marc Berger & Andrew Hall

The Haddenham Project Volume 2

Published with the aid of a grant from

ENGLISH HERITAGE
CONTENTS

Vol. 2: Marshland communities and cultural landscapes

Figures .. viii
Tables ... xiii
Preface & Acknowledgements xvii
Summaries xx

Chapter 1 Introduction: Themes and Knowledges 1
 Sourcing and modelling wetlands 3
 Structuring the text 5
 Archival context and other sources 8
 Inset: John Fanson Bromwich: explorer of 'the gloomy places' (P. Smith) 13
 Radiocarbon determinations (P. Marshall) 15

Chapter 2 Barrow Investigations 17
 The Snow's Farm barrow (HAD III) 18
 The buried soils (C.A.I. French)....... 21
 The barrow sequence 24
 Pre-barrow activity 25
 The barrow 26
 The cremation pyre 27
 Human bone (F. Lee) 28
 Secondary activities 30
 Cremated human remains (F. Lee) 33
 The pottery (J. Pollard) 35
 Worked flint (H.R. Middleton) 36
 Animal bone 36
 Metalwork 36
 Discussion 37
 Pre-barrow settlement 37
 The barrow sequence 37
 The Hermitage Farm barrow 38
 The terrace setting 38
 The barrow sequence 39
 The primary mound 40
 The long mound 43
 The ovoid barrow 43
 Urn group 43
 Pottery (J. Pollard) 46
 Cremated bone (F. Lee) 48
 The round barrow 50
 Later usage 51
 Pottery (J. Pollard) 52
 Worked flint (H.R. Middleton) 54
 Animal bone 54
 Discussion 54
 Sequence and chronology 54
 Inset: Active monuments: the Mergen oboos (C. Evans & C. Humphrey) 55
 Small monument architecture 57
 Wetland stations: later usage 58

Chapter 3 Bronze Age Usage: Landscape Sketches and Environmental Change 61
 HAD VII: a beaker pit 61
 Pottery (J. Pollard) 62
HAD VIII: the rectangular enclosure (with J. Errë) 65
 The enclosure 65
Lynchets systems 68
Discussion 70
 Losing land: sequencing the wet 71

Chapter 4 HAD IV: an Iron Age Shrine? 77
Open settlement 77
 The enclosure 80
Magnetic-susceptibility survey (G. Yates) 82
Faunal remains (L. Higbee) 83
Late Bronze Age and Iron Age pottery (J.D. Hill) 87
Fired clay (G. Lucas) 92
Discussion 93

Chapter 5 The HAD V Enclosure: Constructing the Domestic 97
Coming to terms with strata: methodology 98
Natural sub-soils and topography 99
Soil micromorphology (C.A.J. French) 100
 Interpretation 101
Phasing outline 105
 Phosphates 106
 Period 1 107
 Period 2.1 112
 Period 2.2 112
Excavation themes and analyses 127
 The lessons of occupation strata 127
 Ardmark systems 129
 Pits 133
Building details 137
 Building form 137
 House resourcing (R. Darrah) 142
 Building artefact densities 142
 Floors and interior space 144
Depositional histories and middening 146
Insert: Household space and artefact inventories (P. Lane) 148–9
Iron Age pottery (J.D. Hill & P. Braddock) 152
 Methodology 154
 Chronology 156
 Fabric 157
 Vessel form and size 158
 Surface treatment and ornamentation 161
 Vessel size and function 169
 Ceramic petrology (D.F. Williams) 175
 Production and exchange 177
 Deposition and spatial analysis 178
 Comparison with other Hadham Iron Age assemblages 188
 Style and identity: scored ware communities in the southwest fen 190
Wooden artefacts (M. Taylor) 194
Material culture: sets and assemblages 195
 Abandonment and representation 196
 'Organics' and decoration: negative evidence 196
Fired clay (J. Eté & G. Lucas) 197
Insert: Gender: settlement interpretation and representation (M.L.S. Sørensen) 198–9
Worked and unworked stone (G. Lucas, P. Reeves & S. Laidre) 201
Slags (M. Denniss) 205
Small finds 206
 Brooch (D. Mackreth) 206
Ironwork 209
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper alloy objects</td>
<td>209</td>
</tr>
<tr>
<td>Bone and antler</td>
<td>210</td>
</tr>
<tr>
<td>Fired clay</td>
<td>211</td>
</tr>
<tr>
<td>Glass</td>
<td>211</td>
</tr>
<tr>
<td>Slate/Jet</td>
<td>211</td>
</tr>
<tr>
<td>Small finds distributions</td>
<td>211</td>
</tr>
<tr>
<td>Animal remains (D. Serjeantson)</td>
<td>213</td>
</tr>
<tr>
<td>Bone modification and site-formation processes</td>
<td>214</td>
</tr>
<tr>
<td>Mammals</td>
<td>216</td>
</tr>
<tr>
<td>Domestic mammals</td>
<td>218</td>
</tr>
<tr>
<td>Wild mammals</td>
<td>224</td>
</tr>
<tr>
<td>Birds</td>
<td>227</td>
</tr>
<tr>
<td>Eggshell (J. Sidell)</td>
<td>233</td>
</tr>
<tr>
<td>Fish</td>
<td>235</td>
</tr>
<tr>
<td>Non-anthropogenic vertebrates</td>
<td>239</td>
</tr>
<tr>
<td>Large molluscs</td>
<td>239</td>
</tr>
<tr>
<td>Distribution of bone in the settlement</td>
<td>240</td>
</tr>
<tr>
<td>Special animal deposits</td>
<td>242</td>
</tr>
<tr>
<td>Seasonality in animal resources</td>
<td>243</td>
</tr>
<tr>
<td>Discussion</td>
<td>243</td>
</tr>
<tr>
<td>Ritual structures</td>
<td>246</td>
</tr>
<tr>
<td>Inset: Totems, house signs and ‘booking’ common</td>
<td>247</td>
</tr>
<tr>
<td>Cereal processing, household space and crop husbandry (G. Jones)</td>
<td>248</td>
</tr>
<tr>
<td>Species represented</td>
<td>248</td>
</tr>
<tr>
<td>Traditional cereal processing</td>
<td>251</td>
</tr>
<tr>
<td>The plant samples</td>
<td>253</td>
</tr>
<tr>
<td>Cereal processing and the use of space</td>
<td>254</td>
</tr>
<tr>
<td>Cereal cultivation</td>
<td>254</td>
</tr>
<tr>
<td>Waterlogged plant remains (G. Hunt)</td>
<td>255</td>
</tr>
<tr>
<td>Discussion</td>
<td>256</td>
</tr>
<tr>
<td>Pollen analysis (J. Simms)</td>
<td>260</td>
</tr>
<tr>
<td>Discussion</td>
<td>261</td>
</tr>
<tr>
<td>Overview discussion: cereals — the evidence for local cultivation (G. Jones)</td>
<td>263</td>
</tr>
<tr>
<td>The wood assemblage (M. Taylor)</td>
<td>263</td>
</tr>
<tr>
<td>Overview discussion: local environment and correlation with Willingham Mere (P. Murphy)</td>
<td>266</td>
</tr>
<tr>
<td>Discussion</td>
<td>267</td>
</tr>
<tr>
<td>Planning and chronology (with P. Marshall)</td>
<td>267</td>
</tr>
<tr>
<td>Household histories and dynamics</td>
<td>269</td>
</tr>
<tr>
<td>Spatial structures</td>
<td>271</td>
</tr>
<tr>
<td>Enclosure and defence: the draw of labour</td>
<td>274</td>
</tr>
<tr>
<td>Economy and trade</td>
<td>276</td>
</tr>
<tr>
<td>Representation, closure and status</td>
<td>277</td>
</tr>
</tbody>
</table>

Chapter 6 The Iron Age Landscape

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAD VI (with P. Shand)</td>
<td>281</td>
</tr>
<tr>
<td>Iron Age pottery (J.D. Hill & P. Braddock)</td>
<td>288</td>
</tr>
<tr>
<td>Animal remains (D. Serjeantson)</td>
<td>288</td>
</tr>
<tr>
<td>Other finds</td>
<td>291</td>
</tr>
<tr>
<td>Discussion</td>
<td>292</td>
</tr>
<tr>
<td>HAD VII & X</td>
<td>294</td>
</tr>
<tr>
<td>Environmental remains (S. Peglar)</td>
<td>297</td>
</tr>
<tr>
<td>Iron Age pottery (J.D. Hill)</td>
<td>297</td>
</tr>
<tr>
<td>Animal bone (D. Serjeantson)</td>
<td>299</td>
</tr>
<tr>
<td>Discussion</td>
<td>299</td>
</tr>
<tr>
<td>HAD IX</td>
<td>299</td>
</tr>
<tr>
<td>Iron Age pottery (J.D. Hill)</td>
<td>304</td>
</tr>
<tr>
<td>Animal bone (D. Serjeantson)</td>
<td>304</td>
</tr>
<tr>
<td>Discussion</td>
<td>305</td>
</tr>
<tr>
<td>1981 excavations</td>
<td>307</td>
</tr>
<tr>
<td>Flat Bridge Farm (with L. White)</td>
<td>308</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>The Shrine Complex: Situating Ritual (HAD III)</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>The shrine sequence</td>
<td>327</td>
</tr>
<tr>
<td>Bromwich’s records</td>
<td>328</td>
</tr>
<tr>
<td>Excavation policy</td>
<td>328</td>
</tr>
<tr>
<td>Magnetic-susceptibility survey (G. Yates)</td>
<td>330</td>
</tr>
<tr>
<td>Ambiguities: Iron Age usage</td>
<td>331</td>
</tr>
<tr>
<td>The octagonal shrine (Phase 1)</td>
<td>333</td>
</tr>
<tr>
<td>The main enclosure (Phase 2)</td>
<td>340</td>
</tr>
<tr>
<td>The post settings (Phase 3)</td>
<td>346</td>
</tr>
<tr>
<td>Inset: The Byre of Mayual: a Dinka shrine in the southern Sudan (A. Mawson)</td>
<td>349</td>
</tr>
</tbody>
</table>

Building materials and reconstruction	350
Artefact distributions and depositional context	352
Bone	353
Pottery (with G. Lucas)	353
Metalwork and small finds	357
Depositional context	358
Small finds	358
Bromwich’s finds	358
The 1983 excavations: coins (R. Reece)	360
The brooches (D. Mackreth)	363
Other finds (G. Lucas)	365
Fixtures and fittings	366
Other	366
Discussion	367
Animal remains: evidence of animal sacrifice (M. Beech)	369
Results	372
Discussion	385
Conclusion	394
Inset: Sheep sacrifice among the Tamu-mai of Nepal (J. Pettigrew & Yarih K. Tamu)	395
A note concerning plant remains	396

The Roman pottery (G. Lucas)	396
The fabric type series	396
Pottery forms	398
Dating	402
Sources	403
Vessel types	404
Contextual and spatial analysis	406
Special deposits	406
Conclusion	407

Discussion: transformation and sacrifice	407
Phasing and dating evidence	409
Architectural and depositional parallels	411
Architectural and votive expression (with G. Lucas)	413
Ritual performance: the place of ritual	416
Contents

Inset: Commerce and futures: a Midsummer Fair
Depositional rhythms, 'messages' and totalities
Ritual power and landscape

Chapter 8 The Roman Landscape
The Delphs sites
HAD II
Dating and interpretation
HADVXII
'Outlands': the Delphs occupation
The Willingham fen-edge: Cut Bridge Farm, Willingham (with A. Herne)
Queensholme excavations (G. Lucas & P. Middleton)
Animal bone (M. Beech)
Iron Age and Iron Age 'tradition' pottery (J.D. Hill)
Romano-British pottery (G. Lucas)
Other finds
Discussion
Romano-British pottery in the Bromwich Collection (G. Lucas)
Catastrophe and 'visibility' in the Roman landscapes
The Willingham 'edge': power and landscape

Chapter 9 The Landscape of 'Improvement': Post-medieval Times
Ground conditions, 1550–1950 (N. James)
The Haddenham Level
Inset: The Level and History
Upper Delphs Settlement
Overview discussion: New Englands? (C. Evans)

Chapter 10 Reclamations: Communities in the Level
Domestic frameworks: bounding land
Ritual structures
Earthwork continuities: the place of ritual
Environmental and landscape sequences
Settlement hierarchies, community resolution and social fabric
The loss of fabric
The rider escapes

References

Vol. 1: A woodland archaeology (printed as a separate volume)
Chapter 1 Introduction: Working Land
Chapter 2 The Foulmire Fen Terrace
Chapter 3 The Long Barrow: Transforming Wood (and Bodies)
Chapter 4 The Delphs Terraces
Chapter 5 The Causewayed Enclosure: a Great Clearance
Chapter 6 Concluding Discussion: Constructing Identities (and Landscapes)
References
The Assembly of Context

Preface & Acknowledgements

Extending from 1981–87, the project’s fieldwork spans the later phases of the Fenland Survey project. Originally occurring as a University of Cambridge training excavation supported by English Heritage, between 1985 and 1987 it was funded by the Manpower Services Commission (MSC), with the excavation of the Foulmire Fen long barrow being almost exclusively sponsored by English Heritage. In this capacity the support of J. Coles, G. Wainwright and P. Walker is gratefully acknowledged; H. Evans, then of Cambs. County Council, organized and provided the MSC liaison. During the course of the fieldwork, variously the local interest, support and co-operation of D. Hall and F. Pryor, and also J. Alexander, C. Hills, A. Taylor and M. Young, as well as the late T. Gregory and T. Potter, proved invaluable.

We are grateful for the support that was shown to the project by the Earth and Haddenham Parish Councils, who at different times respectively provided a village hall and school for our use. We would also like to thank Dr D. Wilson, then of the Cambridge University Committee of Aerial Photography, and Squadron Leader M. Young of RAF Wylton for providing additional aerial photographic cover. Dr B. Devereux kindly gave permission to reproduce photographs from the Cambridge University Collection of Air Photographs.

Although in their time run on a financial ‘wing-and-a-prayer’ – and the accounting skills of Terry Hoare verged on the wondrous – given their Cambridge connections, the excavations attracted quite a list of luminaries, including R. Boast, S. Coghill, J. Etté, A. Herne, N. James, P. Lane, C. Lewis, M. Johnson, R. Matthews, N. Merrimen, P. Rowley-Conwy, N. Schlanger, M. L. S. Seersen, S. Stead, T. Taylor and G. Woolf. The involvement of M. Alexander, J. & S. Finney, J. Hutchinson, C. Rochester, M. Samuels, G. Taylor and D. Went is also to be acknowledged, as indeed are the many hundreds who joined the excavation crew at one time or another, each of whose contributions was significant. Often serving as site supervisor in the latter years of the project, P. Reeve’s contribution must be singled out. We are especially grateful to J. Miller, F. Hivernel and J. Marshall for their organization of the project’s finds. J. Dawson of the Fitzwilliam Museum provided crucial conservation advice, and J. Price of the Ancient Monuments Laboratory undertook in-field conservation; the project’s small finds were conserved by K.F. Walker at the Passmore Edwards Museum. Also to be singled out is Paul Shand, who directed the HAD VI excavations. T. Whitelaw’s and O. Bone’s perseverance in undertaking the test pit sampling programme must be gratefully acknowledged, as also should be the participation of G. Owen (photography) and C.A. Shell (surveying and geophysics) of the Dept. of Archaeology, University of Cambridge.

Concerning the production of these volumes, Evans produced the first draft of this volume, which was then amended by Hodder; in the case of the first, this process was reversed. Yet there is no intention here of trying pretend that they are ‘seamless’ or ‘interchangeable’. Each reflects the diverse interpretative interests of its prime author, viz. the interrelationship of theory/practice and long-term processes/events or history. Books – like projects – come ‘into being’ and eventually cannot be otherwise, but hopefully these differences of approach only contribute a sense of breadth and scope to the series.

The ultimate stimulus to finally push these volumes through to conclusion owes much to T. Williams and P. Walker at English Heritage; with their production monitored by K. Buxton — we are sincerely grateful for their patience and support. The delay in their production can only be regretted. Their lengthy gestation has, nevertheless, proven advantageous in terms of the provision of much-needed regional site context through excavations by the Cambridge Archaeological Unit, and we are grateful for information provided by, and discussion with, many colleagues at the Unit, particularly K. Gdaniec, D. Gibson and R. Regan. In the final production of these volumes the graphic skills and computing support of C. Begg, M. Berger and A. Hall has been invaluable. The text has been read by Prof. R. Bradley, C. Cressford and N. Sharples, and we are most grateful for their comments. Beyond this, now long-term discussion and ‘mulling over of things’ with M. Edmonds, J.D. Hill, M. Knight, I. Kinnes and J. Pollard must, with pleasure, be acknowledged. Certainly to be counted amongst the latter, Gavin Lucas’s contribution to this volume must be singled out. It has been inspiring to work with him, and his insights, expertise and analytical skills underpin much of the text.
Apart from the named contributing specialists (many of whom produced on a gratis basis), we would like to thank S. Needham and I. Stead for their comments upon the project’s metalwork finds; A. Challands for his identification of the Roman coins (not including the shrine’s); R. Palmer and R. Bewley for matters aerial photographic; and acknowledge H. Lewis’ insights concerning prehistoric ploughing regimes. The late M. de Neergaard kindly commented upon the HAD 11 leather. D. Haddon-Reece of the Ancient Monuments Laboratory organized and oversaw the project’s radiocarbon dating. Subsequently, A. Bayliss arranged for additional radiocarbon determinations, and we are grateful for her and P. Marshall’s comments upon the project’s dating series, and the latter’s contribution to this report.

During the course of the project’s fieldwork, D. Banham sorted and made preliminary studies of the HAD V plant remains and F. Lee analyzed the Roman pottery fabrics and vessel re-fits from the Snow’s Farm shrine. C.D. De Roche, J. Etté, J. Finney, R. Ripplendale and B. Tilley variously used project data for dissertation topics; Finney’s involved the analysis of the clay pit linings from the HAD V settlement, De Roche examined its loomweights and, supervised by M. Taylor, Tilley initially recorded its wood assemblage. Etté undertook a major study of surface artefact breakage sizes from that site and this involved a considerable fieldwork component, co-ordinating the execution of the sieved transect across the compound’s interior. Ripplendale was able to draw upon Etté’s research for comparative purposes when undertaking his study of pottery fragmentation from the shrine site. Their work has all been variously incorporated into relevant portions of the text that follows; we gratefully acknowledge the significance of their contributions.

Of the specialists contributing to this volume, Charles French would like to thank R.J. Macphail and the Department of Human Environment, Institute of Archaeology, London. Similarly, Glynis Jones would like to thank H. Smith, who did the initial scanning and detailed sorting of most of the flots, and D. Banham, who sorted and made preliminary identifications for some of the samples. She is also grateful to P. Halstead for reading and commenting on an earlier draft of this report. Megan Dennis would like to thank D. Stanley for his advice concerning the HAD V slags.

Mark Beech’s initial analysis of the animal bones was carried out during 1987 as part of a dissertation submitted in partial fulfilment for a Master’s degree in Environmental Archaeology and Palaeoeconomy in the Department of Archaeology and Prehistory at the University of Sheffield. Both P. Halstead and G. Jones provided advice and encouragement at that time; Y. Hamilakis kindly provided assistance with the initial sorting and recording of some of the bones. Funding in 1987 was provided by a Science and Engineering Research Council (SERC) Quota Award; the text was revised in the spring of 1999. Mark is also grateful to S. Sutherland, of the Cresswell Crags Visitor Centre, Notts., for her identification of the bird bone both from the shrine and also the Queensholme assemblage; for the latter report the assistance of M. Levine and P. Halstead is also acknowledged.

Janet Simms is grateful to A. Alderton for initial encouragement and practical help with sampling, and C. Turner provided advice on methodology throughout. Identification of the pollen and spores would have been impossible without the willing help of S. Peglar and others in the Sub-Department of Quaternary Research; R. Houlsby helped in the finding of the relevant archaeological reports.

Dale Serjeantson wishes to stress that her account of the Haddenham assemblages has many authors. The greatest contribution was made by the late M.A.L. Bracegirdle, who recorded a large proportion of the assemblage, and made a study of the beast remains. The project owes much to his work. Others who made a contribution to the recording were J. Butler, P. Nicolaïsen, V. Sellins, G. Shearer, H. Paterson, V. Smithson and T. Waldron. A. Cohen and J. Archer did much preliminary work on the bird bones. P. Murphey and S. Payne gave useful advice on freshwater mussels. She would, moreover, like to thank T. Legge for the use of the animal bone laboratory at Birkbeck College, as well as for many good ideas. She also acknowledges gratefully the Natural History Museum Mammal Bird and Fish Sections respectively for providing for the opportunity to confirm the identification of the beasts, birds and fish.

Andrew Herne thanks R. Jeffreys (Roman pottery) and the late M.A.L. Bracegirdle (animal bone) for their identification of the Cut Bridge Farm finds.

Pamela Smith would like to thank the Bromwich family for their co-operation in researching her biographical sketch; J. Alexander, M. Blackburn, R. Britton-Strong, M. Cra’ster, J. Cribb, H. Davidson, A. Duke, P. Grierson, S. Hallam, B. Hartley, J. Jones, V. Lane, P. Laslett, T. Nield, G. Pollard, P. Salway, G. Smith, the Cambridge English Faculty, and M. Underwood were also generous with their help.

Parts of Nick James’ researches reported here were generously supported by a grant from the Scoltoulli Foundation in association with the University of London, Institute of Historical Research. C. Best described conditions during the 1930s and
Preface

'40s, and J. Mason advised on soil management in the 1940s. He is also indebted to D. Hall for advice on the land forms, to P. Filby, M. Petty and A.P.M. Wright for advice on sources, and to J. & S. Finney for help in the field. For help with documents and documentation, thanks are also due to the staff of the Cambridgeshire Record Office, the Cambridgeshire Collection (Cambridge Central Library), the Cambridge University map collection, the Public Record Office, and the British Library Manuscripts Department, and to the Chairman and Clerk of the Haddenham Level Commission. He is grateful to L. & M. Delanoy and R. Papworth for reviewing an earlier draft of this paper; and for S. Oosthuizen's support.

Finally, in terms of dedication — this is the point at which we should thank family, kin and loved ones (respectively, Evans: Marie Louise Stig Sørensen, Megan and Kim Michael; Hodder: Christine Hastorf, Chris, Greg, Kyle and Nicky). But spanning decades as the project does, something that has involved us for so long seems to evade the personal and almost falls into a sense of disciplinary time. Therefore, on the verge of their retirement (whatever that specifically implies in their cases), for support, friendship and stimulation in the long run this accolade is bestowed on David Hall and Francis Pryor, and also Michael Church, the Hermitage Farm manager who for so long put up with so much from us.
Summary

This is the second volume outlining the results of the University of Cambridge's seven-year-long campaign of research excavations in the marshland environs of Haddenham, Cambridgeshire along the lower fenland reaches of the River Great Ouse. The key concern is with the long-term construction of the cultural landscape, regional environmental adaptation, and the changing interrelationship and constitution of ritual/settlement over time. Matters of methodology and the archaeological process are highlighted throughout, including sampling strategies, resource and population modelling, the hermeneutics of study and the nature of sequence. Equally, amongst their main themes are community resolution, marginalization and representation, and, in order to provide broader perspectives, both volumes are punctuated by inset 'analogical commentaries' drawn from diverse local and international sources.

Having reported and discussed the area's Neolithic monuments and settlements within the first volume, here the concern is its subsequent landuse history. Central to it is the Snow's Farm barrow complex excavated in 1983. Having been superficially investigated by Bromwich in the 1950s, this saw a Romano-British shrine sited upon a Bronze Age round barrow (itself sealing traces of later Neolithic Grooved Ware occupation). Also having a later Iron Age enclosure located immediately beside it, the Snow's Farm sequence accordingly provides the volume's pivot. Therefore, following the description of its barrow proper (with a primary in situ cremation pyre and ten urned and unurned cremations), the sequence of the neighbouring Hermitage Farm barrow is related. The latter proved to be a complex 'small monument', and from it was recovered an important three-vessel Collared Urn cremation. The area's later second millennium BC landscape 'fragments' — including an enclosure and lynchet system (and also a significant Beaker pit assemblage) — are then outlined and, relating to the onset of 'wet' conditions, the evidence of its later prehistoric environmental sequence reviewed.

Thereafter attention turns to the Iron Age landscape. In the course of the project's fieldwork, four Middle/Later Iron Age enclosures were investigated. By far the most thorough and intense of these occurred on the HAD V riverside compound, whose surface deposits (floors, banks, etc.) were superbly preserved through subsequent flooding, and its waterlogged deep-cut features produced important wood and environmental remains. The site's finds assemblage proved prolific, and its animal bone included a remarkably high percentage of wild species (e.g. beaver and various 'big' birds). Arguably relating to trade/exchange strategies and seasonal wetland resource exploitation (the marsh-proud crowns of earlier barrows being utilized to this purpose), its evidence and that of the other enclosures of the period permits uniquely detailed social and economic reconstruction concerning the establishment of wetland-specific communities.

The area's Romano-British utilization hinges upon the Snow's Farm shrine complex. This involved the enclosure of the upstanding barrow mound, and its primary stone-footed octagonal cella was, in later Roman times, succeeded by a series of timber post ranges focusing on a post-built shrine structure upon its crown. Although the site's 'conventional' finds assemblages (e.g. metalwork and ceramics) were not especially abundant, its animal remains were outstanding. They included a series of votive carcases and also head-and-hooves deposits (some having coins set in the mouths of sheep) and a wide array of wetland bird species. When added to the evidence of the site's sherd/vessel distributional analyses, this allows for nuanced insights into the operations of rural shrines and, particularly, the nature of sacrifice and ritual transformation.

A sense of wider perspective is provided by a review of Bromwich's earlier findings from the complex, especially a baton handle which matches those recovered from the renowned Willingham Fen hoard. Therefore, following comparison with other shrine sites and the reporting of the Roman agricultural enclosures (and a dromedary system) also excavated during the main project, a review is made of the extensive Roman settlement and fieldsystems south along the Willingham/Over fen-edge. Not only does this include the results of subsidiary W.E.A excavations at Cut Bridge Farm and Queensholme, but also re-analysis of Bromwich's extensive Fenland in Roman Times fieldwalking collections.

The area's post-medieval enclosure and drainage is then outlined and related to issues of (re-)colonization, the loss of landscape fabric and the broader impact of history upon these 'marginal' lands.
The philosophical remarks in the book are, as it were, a number of sketches of landscapes which were made in the course of these long and involved journeyings. The same or almost the same points were always being approached afresh from different directions, and new sketches made. Very many of these were badly drawn or uncharacteristic, marked by all the defects of a weak draughtsman. And when they were rejected a number of tolerable ones were left, which now had to be arranged and sometimes cut down so that if you looked at them you could get a picture of the landscape. Thus this book is really only an album. (L. Wittgenstein, preface to the Investigations 1958; emphasis added.) Wittgenstein has, in effect, been a ‘neighbour’ during the production of these volumes; he is buried in the Ascension Parish Burial Ground that lies only some 200 m north of the Cambridge Archaeological Unit’s offices alongside the University Farm fields on the west side of town.
Chapter 1

Introduction: Themes and Knowledges

The concern of this volume is with later prehistoric (post-Neolithic) and more recent landscape history: long-term interrelations within, and cultural imprinting upon, land, when the past would have been readily apparent in earthwork form. Reflecting the build-up of time, often to act in the landscape was to transgress or eradicate earlier sites. Mapping associations between sites (and even its potential corollary in the denial of interrelationship) therefore feature. While a repository of myth and association invested with stories, landscapes are not themselves stories or texts. They do not embody only one narrative, but the overlap of many — many lives and interpretations.

A research area is always arbitrary and ultimately inadequate, and cultural traces will always lead outwards beyond its borders: up the Ouse, to the Midlands, Wessex, Yorkshire, the continent or wherever. The risk is to see the research area as ‘the world’ and bind up interpretation solely in terms of what was found. Though satisfactorily neat and closed in the manner of all stories, the Delphs fen-edge terraces (with which we are here primarily concerned) can be walked from end to end in less than half an hour and people must have left this ‘world’ regularly. Similarly, cultures are not closed (Boon 1982). Their ‘fixing’ is often oppositional (i.e. in relation to ‘others’) and their membership fluid. Like landscape, they are another totality that cannot be adequately pinned down. These issues are particularly relevant when dealing with fenland-scape, where much quasi-historical myth-making stands between us and its pre-historical past (i.e. that which is sealed beneath peat and silt). Archaeology must be wary of indulging in such advocacy of long-term regional character, which in the Fenland embraces archaism, isolation, an ‘out-landishness’ and notions of egalitarianism. In short, ‘backwateriness’.

Whereas the first volume of this series is essentially concerned with the Neolithic colonization of land, from the later second millennium we must be concerned with the rhythms of retreat, abandonment and return. In effect, the establishment of the fen-edge as a marginal environment. The emergence of marshland communities — when the ‘wet’ came into being and was adapted to — is, therefore, a central theme — which is not, of course, necessarily the same thing. Against this changing environmental framework, it must, however, be borne in mind that these are cultural responses to ‘the wet’. They relate to knowledge and the appreciation of risk and resources, but would not have been determined by any sense of necessary economic optimism. Just as the research frame is arbitrary, so too does the construction of a region need to be addressed. In the Fenland its implications are great and has led to a presumption of a constant ‘wet identity’. But, at least in the instance of the Delphs environs, this cannot be considered as a given. The onset of the wet is the object of study; at what time communities identified with marsh-life more than with any ‘parent’ or at least upland/up-river settlements. Even in historical times (at least post-1600 AD), if they ever existed, the lives of ‘wily semi-aquatic’ Fenlanders (as portrayed) were as much determined from the boardroom of the Bedford Level corporation as their immediate neighbours.

Throughout this text various temporalities will also be explored and time ‘problematised’. On the one hand, this involves the longue durée: rhythms of re-investiture of monument complexes, place-value association (Evans 1985) and patterns of long-term land-use sequences in general. Yet, equally, there is the sense of the ‘moment’ allowed by detailed excavation, and the two main sites described here can be considered as ‘material ethnographies’. Each reflects upon time in different ways. The extraordinary quality of the faunal assemblage and environmental data from the main Iron Age settlement (HAD V) is such that it allows us, in effect, to construct a calendar of their annual round, detailing their year and procurement sequences. The other well-preserved site, the Snow’s Farm complex, included a series of Romano-British shrines with sequences of votive animal deposits. Shrines relate to the control and ritualization of time (e.g. Bloch 1977; Turner 1974), regularizing the annual cycle, and here...
Figure 1.1. Location map. Note that in main figure dark shaded swashes indicate areas of subsequent Cambridge Archaeological Unit investigations within quarries adjacent to the Haddenham research area.
the idea of the site as calendar will be explored. Finally in this vein, the concept of the 'ethnographic moment' of sites will be employed. Generally relating to ritual, by this is implied the sense of the 'world-centring' rite in which social/cultural matrices of the time are realized and their world brought into being.

This volume ends on loss. That is forgotten histories and the inundation of the landscape in post-Roman times and its subsequent post-medieval reclamation. Reclaiming land/building history — a new colonization which, oddly enough, in its concerns (and contentions) returns us full circle to its original post-glacial imprint and a sense of new land. Directly relevant to the concept of cultural landscape, these themes have already been rehearsed in studies generated by the Haddenham material (Evans 1985; 1997a,b). Of course, given these concerns, the role of the state and its impact upon local communities looms large. The question whether the Roman fens were managed as an imperial estate and the depth of official penetration has resonance in its company-based drainage and arbitrary development in post-medieval times, which precipitated common right disputes.

Sourcing and modelling wetlands

In an earlier study the area’s wetland use during the Iron Age was contrasted with the hydraulic hypotheses, viz. the possibilities of organized environmental response (Evans 1997a). Wetlands and deserts, whilst their association is perhaps not obvious, share a cultural response to extreme environments ('wastes'). Accordingly, the interrelationship of landscape and knowledge will also be explored throughout this volume.

By virtue of their flatness drained wetlands present, in effect, the approximation of an ‘ideal’ ground surface and certainly, buoyed by the ethos of the improvement of wastes, since post-medieval times the fens have attracted grand ‘planner’s board’ schemes. Amongst the more extraordinary are C. Dymock’s proposed ideal farms of the seventeenth century (Fig. 1.2:1; Grove 1981; Evans 1997b). Wonderfully concentric, they have echoes in Tilley’s attempts to apply catchment analysis to the region’s sites (Fig. 1.2:2; Tilley 1979). Of course, the opposite pole in Fenland studies is that of depth — a buried world — and is typified by Clark’s renowned sequence at Peacock’s Farm (Fig. 1.2:3; Clark et al. 1935; see also Smith 1997). Yet, in contrast to attitudes of nineteenth-century researchers (e.g. Miller & Sketchly 1878) and eighteenth-century antiquarians (e.g. Dugdale) who took the evidence of deeply submerged forests in the peats to argue that the fen was once a ‘dry and fruitful country’ and for whom the key issue was the date of its inundation, from Godwin’s research the early date of the deposition of Fen Clay at Peacock’s Farm led to a presumption that the fens were constantly wet throughout most of later prehistory. This understanding was only really re-addressed and the complexity of the region’s environmental sequence appreciated through Waller’s studies in the 1980s (1994).

Arguably the most influential wetland model remains Clarke’s study of the setting of the Glastonbury lake village on the edge of the Somerset Levels (1972). This was underpinned by precepts of 1960s geographic locational determinism and the palaeo-economy of the Higgs school (itself strongly influenced by Grahame Clark; Tilley’s uncharacteristic application of site-catchment analysis to Fenland sites in his undergraduate dissertation published in 1979 was the direct result of his being a student of David Clarke’s). Although duly criticized for the imposition of theoretical absolutes on patchy data (Coles & Minnitt 1995), Clarke presented a uniquely detailed picture of later prehistoric social organization and land use. The impact of this study cannot be over-estimated and it will be referred to on more than one occasion in this volume. Modelling the Iron Age community’s 10-km resource territory, Clarke situated Glastonbury within a local sheep-based transhumant cycle with flocks being driven up on to the Mendip slopes. In the Glastonbury paper, Arbury Camp, an Iron Age ringwork on the clay plain north of Cambridge, was cited as offering a parallel to the Mendip hillforts and (referring to John Alexander’s work) related to an inter-fenland pastoral transhumance model. Clarke’s study was thereafter drawn upon in Pryor’s Fengate researches and generally the impact of transhumant modelling in Fenland archaeology has been considerable. Having indirect sympathies with the all-embracing pastoralism of an earlier generation of researchers (e.g. ‘the Age of Abraham’: Lethbridge 1950), it has subsequently proven something of a ‘catch-all’ and been used to explain almost all major site/monument types in the region, from barrows to Neolithic causewayed enclosures, Bronze Age field systems to Iron Age forts. As a result, ‘nation-wide’ and even near pan-European phenomena have, in the Fenland, been explained through environmental particularism (see Evans 1987 for overview).

There have been two main, if very different, sources for the application of transhumant modelling. The first, by direct historical analogy, is the inter-commoning of stock on distant pasture in medieval times. Involving distances of 1-15 miles (c. 5 average), this entailed the driving out of and camping with stock onto the low summer pastures from fen-edge/hinter-
Figure 1.2. Wetland models: the flat and the deep. 1) Cressy Dymock's model of a 'considerable farm' of 100–300 acres (mss. Bodleian Library: Grove 1981, fig. 2); 2) Tilley's 10-km site-catchment ring for Shippea Hill (1979, fig. 25); 3) Peacock's Farm, Shippea Hill 1935 (after Hall & Coles 1994, fig. 4); 4) Fenland intercommoning (Darby 1940, 13); 5) The Assendelfter Polder land-use model (Brandt et al. 1987, fig. 16.5).
land villages (Fig. 1.2; Darby 1940; Neilson 1920). The other source has been Evans-Pritchard's renowned study of the Nuer (1940), whose landscape 'cycling' is conversely driven by a dry season dynamic. They must leave their main villages through a lack of water and break into small herding groups camping near sources of permanent supply. Annually forced to leave 'home', as opposed to exploiting the seasonal availability of a resource (wetland pasture only available in the summer), this is a very different situation than in the undrained fens; the one environmentally determined (the Nuer), the other opportunistic (the fens).

Providing a dynamic which accounts for the emptiness or blank space between disparate sites, the appeal of transhumance as an explanatory mechanism is that it allows for the connection of far-flung distribution dots. Arguably the scale of migrations envisaged has related to the distance of things/sites that require interpretative linkage and, as such, its application directly reflects upon the intensity of fieldwork and regional period settlement densities.

In many respects the Delphs approximates a concave landscape model of wetland exploitation/location as described by Coles for the Somerset Levels (1978). This emphasizes the superabundance of wetland niches with settlement situated on lower slopes between arable plots and pasture, particularly the fertility of the seasonal 'hangings': the marsh-side meadows that drew summertime intercommoning of animals. However, the essential problem with many of these attempts at modelling is that they are essentially site-centred and static. Contrasting strikingly with, until of late, prevailing attitudes towards marshlands as 'waste', they picture these locations as more or less 'ideal' (e.g. Coles & Minnitt 1995: 192). The only dynamic is generated by the environment itself (seasonal flooding) and they directly link resource use and availability. Although sympathetic to the more constantly wet conditions in the Levels, there is limited conceptualisation of either the cultural evaluation of environmental change or landscape itself in this approach.

The only attempt seriously to incorporate a sense of the achievement of landscape knowledge and the cultural appraisal of resources has been that generated by the Asseadenver Project (Fig. 1.2; Brandt et al. 1984; Brandt & van der Leeuw 1987). In it, reconnaissance and transhumance are seen as mechanisms of investiture effectively to scout out and know land, and from which permanent settlement in drying wetlands may arise. One shortcoming of their work is that permanent settlement/seasonal usage are essentially envisaged as exclusive either/or options. In 'niche situations' (dry locales amid the wet) cycles of seasonal exploitation may well be maintained from dry/elevated permanently settled bases. It is in this and cultural adaptation to environmental change that the Haddenham sequence contributes to a broader understanding of wetland and later prehistoric land use in general. Within this volume land-use modelling will be attempted, but only at the most general level. Because of the limitations of the scale of the fieldwork and the above arguments as regards 'totalities', we will not attempt to model mathematically period/settlement densities or carrying capacities. Yes, the cognitive evaluation of landscape, but not its statistical measure.

Structuring the text

The focus of this volume's studies is the Delphs terraces, situated immediately southeast of the junction of the River Great Ouse and peat fens (Figs. 1.1 & 1.4). While it is intended that this volume can stand independently of the first, aspects of its large-scale landscape setting and survey methodologies will be dealt with only summarily as they relate to the periods discussed here (e.g. metre test-pit sampling of the buried soils on a 50-m grid, involving 100 per cent sieved artefact recovery and phosphate/magnetic susceptibility testing; see Figs. 2.1, 2.4–2.6 & 2.15). Therefore, though as a 'presence' the Ouse—or at least its palaeochannel (Figs. 1.1 & 1.3)—will also snake its way through this volume, its environmental sequence is only fully outlined in Volume 1 (Chapter 2).

Whereas the emphasis of Volume 1 is on two essentially ritual sites, the later period investigations dealt with in this volume were more diffuse and fragmented. They involve two major 'set-piece' excavations: the Snow's Farm Shrine complex (HAD III) and the HAD V Iron Age settlement compound. The remaining sites were largely 'incidental' discoveries in areas opened up so as to achieve other goals (i.e. release of early features) or only summarily investigated during testing of cropmark enclosures. To this end, there will also be 'backgrounding' and 'forwarding' of sites. The project's results must be fully presented, but not necessarily equally, and certainly some of the enclosures that were tested can only be considered commonplace. Nevertheless, their inclusion is warranted, if for no other reason than that they provide a sense of contextual pattern for those two main sites, that for quite different reasons can only be considered extraordinary and have significant interpretative potential. In order to structure the text, the Snow's Farm excavations will provide a narrative link. Having been caricatured as a 'Fenland tell', it primarily consists of a two-phased Romano-British shrine sited on top of a Bronze Age round barrow. While the recovery of Iron
Figure 1.3. Map showing the location of main environmental cores (targeted circles) and transects, with the Ouse palaeochannel indicated in grey tone.
In the context of this study, spanning all the main periods with which it is concerned, it is the Snow's Farm sequence that provides the immediate ‘thread’ to this volume. Considering that it was the only site known in the area prior to the discovery (through aerial photography) of the causewayed enclosure in the 1970s. Investigated by John Bromwich in the 1950s, and mentioned in *The Fenland in Roman Times* (see Bromwich, in Phillips 1970), his fieldwork on the Delphs adds a crucial historiographic dimension to our studies.

It is appropriate that the two major sites discussed in this volume, the HAD V enclosure and Snow’s Farm complex, though of different periods, are complementary. Respectively an Iron Age settlement compound and the other variously a Bronze Age mortuary centre and Romano-British shrine, amongst the themes of this volume is the changing situation of ritual and its interrelationship with the domestic. Of particular relevance here is whether during the Iron Age ritual activity was restricted to its within-settlement expression alone (e.g. human bone and other ‘special’ deposits) or if it had a discrete architectural/site component. In this, the status of HAD IV (a small Iron Age enclosure lying immediately beside the main HAD III site and considered part of the Snow’s Farm complex) is crucial. Certainly unusual in its plan and assemblages, the question arises, was it a shrine per se? It is presented in Chapter 4, and in many ways that is the pivot upon which this volume’s ensuing chapters turn (at least those up to the discussion of the ‘formal’

Figure 1.4. The Upper Delphs Terrace: cropmarks and areas of investigation.

Age pottery from the pre-shrine soils attests to the proximity of (and visitation from) the neighbouring HAD IV enclosure, the barrow sealed traces of later Neolithic occupation, and Mesolithic/Early Neolithic flints were also recovered from the site. Therefore spanning all the main periods with which this study is concerned, it is the Snow’s Farm sequence that provides the immediate ‘thread’ to this volume. This is all the more appropriate given that it was the only site known in the area prior to the discovery (through aerial photography) of the causewayed enclosure in the 1970s. Investigated by John Bromwich in the 1950s, and mentioned in *The Fenland in Roman Times* (see Bromwich, in Phillips 1970), his fieldwork on the Delphs adds a crucial historiographic dimension to our studies.

It is appropriate that the two major sites discussed in this volume, the HAD V enclosure and Snow’s Farm complex, though of different periods, are complementary. Respectively an Iron Age settlement compound and the other variously a Bronze Age mortuary centre and Romano-British shrine, amongst the themes of this volume is the changing situation of ritual and its interrelationship with the domestic. Of particular relevance here is whether during the Iron Age ritual activity was restricted to its within-settlement expression alone (e.g. human bone and other ‘special’ deposits) or if it had a discrete architectural/site component. In this, the status of HAD IV (a small Iron Age enclosure lying immediately beside the main HAD III site and considered part of the Snow’s Farm complex) is crucial. Certainly unusual in its plan and assemblages, the question arises, was it a shrine per se? It is presented in Chapter 4, and in many ways that is the pivot upon which this volume’s ensuing chapters turn (at least those up to the discussion of the ‘formal’
Romano-British shrine in Chapter 7). To this extent it is the place of ritual amid the greatly ‘abundant’, or at least the obvious, domestic record of the later Bronze and Iron Ages (and also Roman times) that is a key concern of this volume. Though risking caricature, this is opposed to the focus of Volume 1 and the Neolithic record, where it is the situation (and detection) of the domestic that requires problematization, its ritual constructions being so readily apparent.

This volume differs from the first in the scale of its data. We are dealing here with substantial assemblages and, in two notable instances, very prolific and complicated sites. In order to present the results, extensive reference must be made to specific features and, accordingly, there needs to be greater employment of diverse numerical systems. In an attempt to maintain some sense of flow, these are kept to a minimum (the archive is not being duplicated) and where possible feature citation alone will be made (F.no.), not their constituent stratigraphic contexts ([no.]; <no.> indicates finds catalogue entry). (Note that the project’s grid, to which site as opposed to ‘landscape’ descriptions are related, unless otherwise indicated was oriented 33.5° east of true north.)

Continuing to employ a device initiated in the first volume, various analogies (ethnographic and historical) and other ‘commentaries’ are inset into the text by way of introducing indirect parallels and emphasizing key themes. Whatever their source, their aim is to broaden discussion beyond the immediate localism of the Fenland sequence. In other words, paraphrasing Sahlins (1987, and John Donne), ‘no terrace is an island’.

Archival context and other sources

In order to provide a sense of ‘depth’ of landscape practice it is appropriate to introduce this volume with Bromwich’s day-book entries (see opposite) concerning his work at the Snow’s Farm complex in
Introduction: Themes and Knowledge

UD.1 G. Wright TL/4097 37
6 inch Cambs xxviii southeast
C.A.S. Site No. 3
1/2500 Cambs xxviii 12
xxix 9
Haddenham 932 (80 ac)

Geology: First Gravel Terrace.

247 25 March. Flood Aph. CEH UK. 1952 No. 2044 shows the centre of this field east of Snow's Farm un­flooded. This photo also shows a rectangular mark where RB finds were made later.

Gt. Ouse Catchment Board spot heights:

<table>
<thead>
<tr>
<th>Height</th>
<th>O. D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>41007373</td>
<td>11.1 ft</td>
</tr>
<tr>
<td>40957398</td>
<td>8.4 ft</td>
</tr>
<tr>
<td>41377379</td>
<td>8.9 ft</td>
</tr>
<tr>
<td>41167353</td>
<td>10.0 ft</td>
</tr>
</tbody>
</table>

1953 July 18. Mr Bester found RB sherds, a first brass and a brooch which was not Roman. The rectangle mentioned above showed up well as a soil-mark after deep ploughing.

1953 July 23. APH. Nos. 19 and 20 showed a (rural) mark within the irregular rectangle.

1953 July 25. APH. Nos. 11 and 14 ditto not so clear.

1953 July 25 and 26. Section cut up open furrow, through southern ditch of rectangle and both ditches of circle within which the majority of the ploughed up surface finds had been made. This section called UD.1a. A feature, either side of outer sandy bank, was made of Ampthill clay, which could have been dug in S. E. corner of field (found by Holmes or Geology Survey by boring). This sealed an illegible third brass coin. Section in graph book.

1953 July 27 Aph. No. 15 shows mark made by this section.

1953 Oct. 25. APH. No. 15 badly exposed.

1953 Oct. 4. Three more sherds from area of circle within square. 40917372. Round mark on Aph to east of field yielded modern china.

1953 Dec. 3. With Holmes of the Geology Survey picked up more rims and bases at 40917372. He picked up a (?) barbarous radiate. At 40737363 Ampthill clay came up from 4 feet with his auger.

1954 Jan. 11. A bronze pin bent nearly at right angles and a few more sherds from within the black circle at 40917372.

1955 Nov. 3. Sherds and a tile from area 40917372.

1957 Sept. Mr Bester gave long bronze object X brought further (?) to measure from this site.

Analysis of clay samples from Mr J. Bromwich.

A. With pot fragment marked UD1. Grey-brown silt with silica, and mineral clay. Organic matter common. Sand grains both rounded and angular indicating reworked and freshly weathered sand. No reaction with HCl. Flints present.

B. Granular medium textured sand. Little or no clay. Some organic matter present. CaCO3 present giving a moderate to strong reaction with HCl. Sand grains both angular and rounded.

C. Sand similar to that described under B. but containing monaxon sponge spicules and a little organic material. Positive reaction to HCl.

D. Dense brown organic clay with very little silica. Structureless. No micro-organisms. No reaction with HCl.

E. Black silty organic peat or peaty mud, composed of amorphous brown organic material with a trace of angular and rounded sand. Odd macro flint present. No HCl reaction.

F. Dark grey mixture of organic material and silice in about equal proportions. Silica rounded and freshly angular. Several macro flints present. No reaction with HCl.

Note. Samples B. and C. suggest deposition in a fresh water lake with mud forming somewhere in the near vicinity.

Sample A could be a soil.

Samples D. to F. suggest alluvial clay of fresh-water origin, associated with the development of peat.

Without knowing their stratigraphic relationship it is difficult to give a more sensible appraisal of their origin.

D. M. Churchill.
1952–4 (‘Site 4073’, in Phillips 1970). Held in St John’s College Library and the County Council Record Office, Cambridge, his archive offers a unique perspective upon the region’s archaeology. As is clear from his remarkably complete sketch plan (Fig. 1.7), he did much more than just fieldwalk sites in the vicinity, but investigated them at the time of their first ploughing when the fields were being taken out of pasture. In the case of the Snow’s Farm site, he evidently cut a sondage along an open furrow, sectioning the compound’s ditch (from which we retrieved one of his milk bottles) and what later proved to be the interior of the shrine. Thereafter, he and his colleagues returned to the site during subsequent ploughings and were able to recover a quantity of finds, though unfortunately not all can be located today (full discussion of Bromwich’s findings will be made in Chapter 7).

Providing a sense of ‘local voice’, to this can be added a description of our 1983 excavations that Charles Bester appended to his manuscript text, Haddenham: a Parish History (1981), held in the Cambridgeshire Collection of the Central Public Library, Cambridge:

Following the 1983 harvest a party of archaeologists and students from Cambridge excavated the site near Snow’s Farm, which is situated at the south west corner of an area called the Upper Delphs, farmed by A.G. Wright and Son.

This land is slightly lower than the surrounding fenland and without doubt it was an island before the fens were drained in the 17th century.

The peaty soil here is very shallow, and the prehistoric surface only a few inches below the cultivated soil.

The surface soil was removed, and a remarkable series of occupations by early man was uncovered.

Firstly a ditch about six feet deep and five feet wide was found which enclosed a square shaped enclosure in which Roman pottery, coins, pins or brooches were discovered. Within this enclosure was a small octagonal enclosure, surrounded by a ditch, which had been used as a sacrificial place or temple.

Burnt bone of sheep or goats had been scattered around, and several complete skeletons of sheep or goats, evidently prepared and laid out for sacrifice, were placed in the centre of the temple area. Evidence of human burials were found nearby, and also cremation pits containing human remains.

The deep ditch around this site, with the gravelly clay from the ditch thrown inwards to make a bank, made a very strong defence, especially if topped by a wooden fence, of which no evidence was found.

This deep ditch was filled with peaty soil, no doubt deposited by the recurring flood waters which regularly swept down the nearby river valley from the highlands which now comprise the Ouse catchment area.

Below this Roman settlement traces of Iron Age occupation were found, around which was another ditch, which had been filled with a gravelly deposit, again without doubt brought from the highlands by river floods.

This ditch had been completely filled by gravel before the peat formation period, and the spoil from the river valley could easily be seen in contrast to the gravelly clay of the Delph area.

Evidence of earlier occupation was confirmed by the discovery of several Stone Age implements, so on this site we find a sequence of human activity from Stone Age, Iron Age, and the Roman period, interspersed with heavy flooding from upland waters, to fen reclamation and modern farming.

It is interesting to conjecture that when Abraham was preparing to sacrifice his son Isaac, and eventually found a lamb caught in a mountainside thicket, our ancient forbears were preparing for similar rituals on a site in Haddenham Fen.

Bester, who (with his daughter) was Bromwich’s sometime assistant in the course of his Fenland researches, became a local historian of renown and the sizeable collection of fieldwalking material he kept at his home in Haddenham has, since his death, been transferred to Ely Museum. His text is not reproduced here in any kind of ‘knowing irony’. His and Bromwich’s fieldwalking efforts established a foundation for work along the southwestern fen-edge which the Fenland Survey 30 years later was able to build upon.

In his text Bester is unequivocal that the early inhabitants of the area were ‘forebears’ of today’s populace. Elsewhere in the manuscript there is great emphasis (verging on wonderment) upon the emergence of monuments from out of the peat. In this and its allusions to diverse sources (such as the Biblical parallel above), his writings can be seen as akin to a folklore tradition and are not unlike the accounts of nineteenth-century antiquarians in the region (see Volume I, Introduction; Evans 1997b). As an informed layman, ultimately this is about making sense of ‘fragments’ and the provision of interpretative context, no matter how far-flung their sources.

Similarly, a recent piece by the late Ernest Papworth, local village historian of Over (who excavated with Simpson at the site of Cold Harbour Farm), emphasizes the relationship between archaeology and a lost environment. Rehearsing a number of regional stereotypes (e.g. semi-amphibious inhabitants, the fear of ‘vapours’ and malaria), the passing of the wild fens has been a theme of regional commentators since the early nineteenth century (arguably attributable to the marked loss of habitat through the advent of steam pump drainage). Yet, however obliquely, in this case he actually writes in reference to the results of the recent Needingworth quarry excavations (Evans &
Introduction: Themes and Knowledges

Knight 2000; 2001) and the possibility that after extraction the land across much of the north side of the village will be restored to a nature reserve:

OUR PROUD FEN

What did our old Fen look like 'in the days of yore', before the Great Drainage scheme of the 17th century, and even long before that?

Looking across from Le Bury Holme towards the river and southwards it would have resembled, especially in winter, a great vast lake studded with numerous small proud islands just above the waters surface; fringed with tall rustling reeds, willows, waterlily’s, marsh plants and many types of aquatic vegetation.

Today's transformation gives no idea of the vastness of this great mere and its ancient flora which covered the land, now yielding fruitful crops with only the odd name to remind us of those far distant days.

This now well-drained land no longer supports the abundance of fish and wildfowl, and in particular the great quantity of eels from which the nearby city of Ely took its name.

Thankfully so has gone the Fen Ague, the fevers, malaria, rheumatics and deplorable conditions which these earlier Fen Edge peoples had to endure.

All the low ground was uninhabitable, and in any case believed to be haunted, it was a very brave and foolish man who ventured into this huge and hideous environment on a dark and cold winters night.

The fog and 'dark vapours' which rolled in from the river created mysterious shapes, enough to put fear into the most stout-hearted, if there was any place for the Devil to dwell it would most certainly be here.

It is therefore not surprising that they were called 'Half-Savages', trying to survive in this semi-amphibious life as they waded, swam and poled their flat-bottom boats from one island to another.

There is still however a certain sadness, even today in watching the destruction of the present fen, though in all conscience we know that it is necessary and right to change this once howling wilderness into benefits which we will all enjoy.

Maybe, one day in the not too far distant future we will once more have golden-reed beds, a variety of waterfowl, numerous dragon-flies and gaudy winged insects, with great pike swimming beneath overhanging dark-green willows, heronshaws standing like unemployed curates in the shallow’s and lighter green reeds swaying in a gentle breeze. Fidgety coots jerk their way across the waters, and perhaps the return of the Bittern to hear its distinctive boom as it stretches its long neck heavenwards, letting everyone know of its presence and territory.

High above this idyllic scene the lone Hawk or Kestrel hovers, its sharp eye detecting a small timid water vole, followed by a steep dive and in its sharp claws lifting the doomed animal away to the distant trees on the higher ground.

This action disturbed the terrified wild-fowl as the piped and clacked in small groups, suddenly the air was filled with the crackle and flutter of their wings as they raced across the waters to become quickly airborne, bringing forth another even louder boom from the startled bittern, and

![Figure 1.6. A landscape liable to flood (RAF photograph of 1947 floods). Standing proud of the water level and visible in earthwork form are the Snow’s Farm barrow/shrine (A) and the Cut Bridge Farm complex (B; see Chapter 8); water sits in the ditch profile of the HAD V Iron Age enclosure (C; see Chapter 5) and another riverside enclosure to the east (D).](image-url)
Figure 1.7. Snow's Farm, 1953. 1 & 2) Bromwich notebook sketches with those to left showing early stages of plough-exposure; A-B on '1' is registered to north-south 'furrow line' on '2' (cf. Fig. 7.2; Cambs. County Council Record Office); 3) left, contemporary aerial photograph (?by Bromwich) owned by Charles Bester that clearly shows the plough-exposed outline of the site; right, verso.
John Fanson Bromwich: explorer of 'the gloomy places'
by P.J. Smith

John Bromwich (1915-90), Fellow of St John’s and then Wolfson College, Cambridge, is remembered as an eccentric, meticulous, perfectionistic ‘man of parts’ and ‘scholar of minor fields’, who cultivated life-long enthusiasms for philology, numismatics and field-walking. According to his own description, Bromwich (1956) spent ‘thirty years umbrella poking in the Fens’, during which he carried a ‘great weight of potsherds back to Cambridge, mostly by bicycle’ (1970, 125). He had been introduced to the study of fen topography and extinct waterways as a boy growing up in Cambridge by the local archaeologist and geologist, Gordon Fowler. He took First Class Honours in Cambridge University’s Archaeological and Anthropological Tripos in 1937, with a thesis on ‘Population and Economics in the Southern Fenlands’. Following graduation he became a Scholar of St John’s for 1937–38, was awarded a College Research Grant for 1938–39, and received a Goldsmiths’ Senior Studentship to begin postgraduate work at Cambridge, studying the ‘development of the vocabulary of the English language from Anglo-Saxon to Middle English’.

In September 1939, Bromwich, who had a distinguished career in the Officer Training Corps as a student, was commissioned into the Middlesex Regiment and was recognized as an expert in the mathematically precise use of machine guns. First stationed guarding the London docks, he was later posted to Egypt and then to the British Military Mission in Greece. Major Bromwich was demobbed in 1946, suffering from partial deafness and shell-shock. According to his family, he never recovered from the War, remaining psychologically frail until he died.

Bromwich began teaching ‘The History of the English Language’ for the Cambridge English Faculty in 1947. In 1949 he was appointed to a University Assistant Lectureship, offering papers in Middle English, Norse and Anglo-Saxon, and in the same year was elected to a Fellowship at St John’s. By 1956 Bromwich was a University Lecturer in the English Faculty, a position he continued to hold until retirement in 1982. Unfortunately, he struggled recurrently with ill health and found it difficult to complete his philological studies.

His sanctuary seems to have been the fens. Mary Cra’ster, former Assistant Curator in the Museum of Archaeology and Anthropology, remembers (pers. comm.) that Bromwich ‘got on very well with the local farmers’, enjoyed chatting in pubs and therefore quickly knew of possible artefacts or sites found by residents. Others interviewed add that Bromwich, knowledgeable in geology, archaeology and waterways, was most happy when in the Fen. ‘For many many years, after the War, Bromwich assiduously, systematically, precisely recorded anything there was to find in the area north-west of Cambridge . . . he would ring at 6:30 on a Sunday morning’ to ask Roman pottery specialist, Brian Hartley (pers. comm.) to join him fieldwalking. According to Hartley, Bromwich admired and often quoted Fox’s Archaeology of the Cambridge Region (1923), using it as his main inspiration. Bromwich successfully applied Fox’s topographical mapping approach to a concentrated geographical area.

Sylvia Hallam of the University of Western Australia was introduced to Fenland field survey methods by John Bromwich when she was a Cambridge research student in 1949 and employed his methods in her extensive investigation of Roman settlement in Lincolnshire. She remembers that he was concerned about the casualness of Fox’s maps (pers. comm.) which he felt were not sufficiently precise. Rather than Fox’s 1/4-inch per mile scale, Bromwich used 6” Ordinance Survey maps, introduced an exact method of documenting field locations by paced field measurements and carefully transferred the field information to an accurate card catalogue.

Bromwich retreated into fantasy as he aged, sadly becoming increasingly eccentric in his behaviour, and he was no longer able to collect Fenland artefacts for the Museum. Moving to Cromer in 1982, he died on 25 December 1990.

Figure 1.8. Bromwich, punting on the Cam in 1947. Fascinated by local waterways since boyhood, he spent many hours exploring the fens calling them ‘the gloomy places’ (pers. comm., Mrs Bromwich; photograph courtesy of Mrs Bromwich).
Table 1.1. Radiocarbon determinations.

<table>
<thead>
<tr>
<th>Site</th>
<th>Laboratory number</th>
<th>Context number</th>
<th>Material</th>
<th>Radiocarbon age (±1σ)</th>
<th>δ¹³C (%)</th>
<th>δ¹⁵N (%)</th>
<th>Calibrated date (68% confidence)</th>
<th>Calibrated date (95% confidence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAD III HAR-6176</td>
<td>1072</td>
<td>1004</td>
<td>Charcoal, unidentified</td>
<td>3950±90</td>
<td>-25.0</td>
<td>-</td>
<td>2590-2300 cal. bc</td>
<td>2540-2140 cal. bc</td>
</tr>
<tr>
<td>HAD III HAR-6177</td>
<td>1033</td>
<td>1004</td>
<td>Charcoal, unidentified</td>
<td>3190±70</td>
<td>-25.1</td>
<td>-</td>
<td>1520-1400 cal. bc</td>
<td>1460-1310 cal. bc</td>
</tr>
<tr>
<td>HAD III HAR-6179</td>
<td>1060</td>
<td></td>
<td>Charcoal, unidentified</td>
<td>2700±90</td>
<td>-27.4</td>
<td>-</td>
<td>970-790 cal. bc</td>
<td>1050-870 cal. bc</td>
</tr>
<tr>
<td>Hermitage Farm</td>
<td>BM-2479</td>
<td>2172</td>
<td>Human child inhumation</td>
<td>3420±45</td>
<td>3.4</td>
<td>-</td>
<td>1780-1640 cal. bc</td>
<td>1880-1610 cal. bc</td>
</tr>
<tr>
<td>Hermitage Farm</td>
<td>OxA-6971</td>
<td>2174</td>
<td>Charcoal, unidentified</td>
<td>2110±70</td>
<td>-27.1</td>
<td>-</td>
<td>350-10 cal. bc</td>
<td>370 cal. bc - cal. AD 60</td>
</tr>
<tr>
<td>HAD V HAR-6764</td>
<td>2655</td>
<td></td>
<td>Charcoal, unidentified</td>
<td>1950±60</td>
<td>-27.3</td>
<td>-</td>
<td>80 cal. bc - cal. AD 80</td>
<td>170 cal. bc - cal. AD 130</td>
</tr>
<tr>
<td>HAD V HAR-6766</td>
<td>2735</td>
<td></td>
<td>Charcoal, unidentified</td>
<td>2000±60</td>
<td>-23.4</td>
<td>-</td>
<td>50 cal. bc - cal. AD 70</td>
<td>170 cal. bc - cal. AD 130</td>
</tr>
<tr>
<td>HAD V HAR-6767</td>
<td>1635/1679</td>
<td></td>
<td>Large twigs</td>
<td>1970±60</td>
<td>-28.5</td>
<td>-</td>
<td>110 cal. bc - cal. AD 110</td>
<td></td>
</tr>
<tr>
<td>HAD VI HAR-10519</td>
<td>2806</td>
<td></td>
<td>Wood, unidentified</td>
<td>2240±80</td>
<td>-27.6</td>
<td>-</td>
<td>410 cal. bc - cal. AD 60</td>
<td></td>
</tr>
<tr>
<td>HAD VIII BM-2091R</td>
<td>2806</td>
<td></td>
<td>Wood bark, probably Quercus sp. (Maisie Taylor)</td>
<td>1990±120</td>
<td>-25.8</td>
<td>-</td>
<td>360 cal. bc - cal. AD 320</td>
<td></td>
</tr>
<tr>
<td>HAD IX HAR-10513</td>
<td>3764</td>
<td></td>
<td>Wood, desiccated wood, previously waterlogged, remaining subsample identified;</td>
<td>2110±90</td>
<td>-29.0</td>
<td>-</td>
<td>350-10 cal. bc</td>
<td>390 cal. bc - cal. AD 80</td>
</tr>
</tbody>
</table>

Many feet below the present level of this land, on the gravels once lived fair Celts and Bronze Age peoples in their primitive huts, burying their dead in large round Barrows; living where they could on the higher islands.

Today we are discovering their relics of the past and preserving them for future generations, as we perhaps sit silently beneath the vast tablecloth of a typical fen sky; can we therefore pause and remember how this old Fen has given us sustenance for countless centuries; let us enjoy it and honour it and pay it the respect it deserves.

But will it ever again be the silent fen of solitude and quietness, or will the clean air be filled with the pollution of car engines, the over-loud transistors
with their selfish cacophony of noise, the barking of unattended dogs and the ever persistent barbecue to drive away the birds to spoil for everyone the paradise which was the very reason why they came in the first place, perhaps not; like dear old Mr Gladstone we 'Must wait and see!' (24.11.'98 in Over Exposed no. 114)

Certainly jarring with any sense of scientific practice, do such accounts as the latter two have any place in a modern site report? Both provide a sense of 'traditional' village voice in their commentary upon recent excavations. Greatly concerned with local identity, they act to counterpoint and, in some respects, echo these volumes' ethnographies. It is this emphasis, the need for a narrative of immediate relevance, that primarily distinguishes their accounts from more academically informed texts. Particularly relevant in Papworth's piece is the ethos of archaeology revealing a hidden marshland past, but which has long been known to be there. In the same way that Bester draws upon Biblical precedent, this is about fitting results into established frameworks of knowledge, an issue of obvious relevance to any programme of investigation. Finally, the emphasis on change and succession in the countryside within the latter contribution is a theme that will be returned to in this volume's final discussion.

Radiocarbon determinations by P. Marshall

Thirteen radiocarbon determinations have been obtained on samples from Haddenham Project sites relating to this volume. The Harwell Laboratory processed ten samples between 1988-1990, two samples were processed by the British Museum between 1982-1987, and one by the Oxford Radiocarbon Accelerator Unit in 1999. The principal aims of the dating programme were to:

1) date the sites and establish their temporal relationships in the landscape;

2) date the construction of structures.

Prior to submission for dating, wood and charcoal samples were not routinely identified as either short-lived species or of roundwood or sapwood. Subsequent examination of a sub-sample of material remaining from some of the original samples submitted for radiocarbon analysis has resulted in HAR-6177, HAR-8764, and HAR-8766 being identified as predominantly oak heartwood. Thus these are affected by an unknown age-at-death offset (Bowman 1990) with respect to the archaeological events they were used to date. The remaining sub-sample of HAR-10513 was mainly unidentified bark and thus, assuming that it was not residual material, should relate to the initial silting of the ditch at HAD IX. No material remained from HAR-
and the age offset is therefore unknown, but all are older than their contexts by an unknown amount.

Radiocarbon analysis and quality assurance

The 10 samples processed at Harwell were pre-treated using the acid-alkali-acid process (Mook & Waterbolk 1985, 36–7). The samples were then combusted to carbon dioxide and synthesized using a method similar to that initially described by Tamers (1965) and a vanadium-based catalyst (Otlet 1977). The radiocarbon content was measured using liquid scintillation counting as described by Otlet (1979).

The bone sample processed at Oxford was prepared and measured using methods outlined in Hedges et al. (1989) and Bronk Ramsey & Hedges (1997). The pre-treatment method was a collagen extraction (Law & Hedges 1989; Hedges et al. 1989) followed by gelatinization and separation by filtration (Bronk Ramsey et al. 2000).

The wood-bark sample processed at the British Museum (1982–1983) was pre-treated with dilute acid and alkali (Ambers et al. 1987) and the charcoal sample (1986–1987) with 1 M HCL, followed by washing in water and a dilute alkali for the removal of humic acids (Ambers et al. 1989). The radiocarbon content of both samples was measured by liquid scintillation counting of benzene using the procedures outlined in Burleigh et al. (1976).

All three laboratories maintained a continual programme of quality assurance in addition to participating in international inter-comparisons (Rozanski et al. 1992). These tests indicate no significant offsets and demonstrate the validity of the precision quoted.

Results and calibration

The radiocarbon results are given in Table 1.1, and are quoted in accordance with the international standard known as the Trondheim convention (Stuiver & Kra 1986). They are conventional radiocarbon ages (Stuiver & Polach 1977).

The radiocarbon determinations have been calibrated using the maximum intercept method of Stuiver & Reimer (1986) with data from Stuiver et al. (1998) and are quoted in the form recommended by Stuiver & Reimer (1986) with end points rounded outwards to 10 years. Ranges are quoted at 95 per cent confidence unless otherwise specified and have been calculated using OxCal v3.5 (Bronk Ramsey 1995, 1998). The probability distributions (Fig. 1.9) are derived from the usual probability methods (Stuiver & Reimer 1993; Dehling & van der Plicht 1993).

The estimated date ranges quoted in italics are derived from the mathematical modelling of the archaeological chronology and are posterior density estimates.

The results of stable isotope analyses undertaken at Oxford on the one bone sample dated are shown in Table 1.1. The δ¹³C value of -20.0‰ and δ¹⁵N value of 12.0‰ are consistent with a very largely terrestrial diet, with only a minor component of marine protein (Chisholm et al. 1982; Mays 2000; Schoeninger et al. 1983). The C:N ratio suggests that bone preservation was sufficiently good to have confidence in the radiocarbon determination (Masters 1987; Tuross et al. 1988).
The Roman Landscape

2 m wide, the main ditch profile is steep-sided and 'U'-shaped. Its floor is shallow bottomed, 0.50 m across, and lies 1.50 m below the modern surface (1.0 m below the old ground surface; Fig. 8.12:C–D). The primary ditch fill is a blue-black silty clay, waterlogged at the time of excavation. This grades upwards into a grey clay making up most of the remainder of the secondary fill. Coarse sands and gravels are absent from these deposits, although they are common in the grey-brown silty gravel derived from erosion of the internal bank. Animal bone was recovered in good condition from the primary fill, and large fragments of pottery from all three excavated units.

The site was, at least in part, overlain by alluvial deposits at some time subsequent to its occupation. This and the topsoil were excavated as a single unit. It lay 0.20–0.25 m thick outside the ditch, as much as 0.50 m thick above it, and 0.30 m deep within the interior. Externally, beyond the ditch, the alluvial clay rested directly on the old ground surface. Interior to it, and separated by a metre-wide berm, were the denuded remains of a gravel bank. Made up of iron-stained coarse yellow sands and rounded gravels, this was 2 m across, and survived to a height of 0.40 m. In the recorded section it merged downwards into a more gravel-free sandy layer extending beyond the trench into the enclosure upon the old ground surface.

Very few finds were recovered from the bank itself, and only small quantities of pottery from the surface of the sandy deposit. In fact, most of the finds, generally small fragments in an abraded state, came from a mixed layer inside and adjacent to the bank, a grey-brown sandy loam with occasional gravel and containing flecks of charcoal. Identified by the late Mark Bracegirdle, only nine animal-bone fragments were recovered from the excavation. Aside from a single cattle bone and a fragment of probable bird bone, all were attributable to sheep/goat.

Given the quantity of artefacts recovered and the occurrence of the 'C'-shaped gully within its interior, there can be little doubt of the enclosure's occupation. Whilst from the limited scale of the test excavation little more can be said, as the most northerly of the interlinked Roman cropmark clusters along the Willingham fen-edge, its relative situation and second-century date complement the establishment of the barrow-top shrine on the Delphs opposite.

Queensholme excavations
by G. Lucas (with P. Middleton)

Excavations at Queensholme (centred TL 415 715) were undertaken over three seasons between 1985 and 1987 by the WEA to provide training for adult students and obtain dating evidence from cropmark features (see Figs. 8.14 & 8.15). This complex lies southeast of the Upper Delphs and close to Belsars Hill, a putative Iron Age hillfort (see Figs. 8.11 & 8.20). It consists of a series of inter-connecting droveways, field boundaries and enclosures, the most notable of which is a large, square double-ditch enclosure (Figs. 8.14 & 8.15:E). The latter 'conjoins' a large rectilinear paddock system (Fig. 8.15:F) that runs off the eastern side of a major 'way' running northeast-southwest from Willingham to the Old West River (Fig. 8.15:H) and is one of a series of Iron Age/Romano-British settlements strung out along the fen-edge south of the river. South of this drove, aerial photographs register three ring-ditches that are variously framed, and imcepting upon, by the enclosure system (Fig. 8.15:A–C).

The project was directed by Paul Middleton and David Trump, who published an interim report of the first two seasons' fieldwork in Fenland Research (1987). The excavations consisted of a series of 14 targeted trenches which in all cases located archaeological activity (Fig. 8.15). For the most part hand-dug in their entirety, by necessity the trenches were small and, to avoid crop compensation, were largely located along field edges and in the wide berm of Sponge Drove. Given the limited exposure, there is no scope nor the need for full feature-by-feature reportage; for this the project archives should be consulted. Instead, only a broad outline of the results will be included. A fuller presentation of the site's finds assemblages is, however, warranted; not only for their intrinsic value but as they provide important context (and contrast) for the Delph excava tions. In order to abet whatever interpretation is possible, the trench findings have been grouped by area.

Only a very general palaeo-topographic reconstruction is possible but between the southernmost (Trench 1) and northernmost (Trench 7) trenches, the present ground surface slopes down by only a metre while the difference in alluvial cover changes from 0.10 m to 0.30 m thick. Although thin, however, in most cases it has preserved a sufficient depth of buried soil (c. 0.10 m thick).

Trenches 1 & 2
Within Trench 1 two ditches were located which correspond with cropmarks indicating a junction/cross-over between two linear features, which, in part, appears to represent a (re-)turning droveway (Fig. 8.15:D). The later ditch had a broad, flat-bottomed cut with gently sloping sides (width 2.50 m; depth 0.60 m) and contained a mid-dark grey clay with frequent fine gravels (2305). On either side of the cut and overlying the buried soil there was an upcast of silty gravels (2304), which was thickest on the south side suggesting associated banks. Slight traces of an earlier, irregular 'U'-shaped ditch (east extension 0.80 m; depth 0.55 m) also lay to the south with a fill undistinguished from the later cut.
The ditch in Trench 2 consisted of a ‘U’-profiled cut with concave base and fairly steep sides (width 1.70 m; depth 0.70 m). Its lower and upper fills ([2316] & [2315]) were similar to those in Trench 1 but these were overlain by a continuous layer of buried soil which displayed an undulating profile suggestive of cultivation ([2313]). The furrows were spaced c. 1 m apart and the layer was c. 0.15 m thick at its maximum. Over this and the southern edge of the ditch was a thin lens of gravel. To its south, the ditch cut an earlier feature, probably a pit c. 0.20 m in diameter ([2317]).

It is probable that the earlier ditch identified in Trench 1 is the true contemporary of that in Trench 2. This would account for the fact that the later recut in Trench 1 is of a different profile and that it appears to cut the buried soil. Also, the thin lens of gravel seen to overlie the buried soil on the southern side of the ditch in Trench 2 may represent the spread upcast of this recutting episode which was associated with an exterior bank and interior make-up/mettingal. The earliest phase, then, consisted of paired ditches running northeast-southwest c. 16 m apart which possibly fork at this point of the trenches. The northern of these at least was subsequently infilled as the land became arable and then, finally, another ditch length on a completely different alignment cut the southern ditch.

The dating of these features is not straightforward; some Romano-British pottery was found within the recut ditch in Trench 1, while prehistoric pottery and a core rejuvenation flake characteristic of Late Mesolithic/Early Neolithic attribution occurred in the base of the ditch in Trench 2. Either of these finds could be residual, but it suggests that the recut is at least of Roman date or later, while the primary ditch pair may be later Iron Age/early Roman date given the occurrence of contemporary features elsewhere, and is most likely to be a droveway.

Trenches 4-7
Located to investigate a dark circular cropmark, Trench 6 exposed a dark gravelly silt layer ([2384]; 0.13-0.57 m thick), with increasing gravel to the western end and a cluster of pre-Flavian pottery sherds. This may represent the upcast of a nearby ditch, perhaps that which lies just to the west as a cropmark (see Fig. 8.15), or else mark a midden.

To the northwest, two substantial ditches were located in Trench 5, which was positioned near the corner of a rectilinear cropmark enclosure (Fig. 8.15). A later ditch and its recut were the most obvious, both of which cut the alluvium and were sealed only by the ploughsoil. Remnants of the first ditch ([2360]) lay to the west of the later recut which displayed a broad profile with gently sloping sides to a rounded base (width 1.80 m; depth 0.50 m). It was filled by a loose dark silt with charcoal, occasional pebbles and redeposited first-century AD Romano-British pottery as well as three iron nails ([2333]). Both of these boundaries cut a much earlier feature which is probably a ditch running obliquely to the trench. Its profile is only suggested by the overlying alluvium which has settled into the hollow of the lower fills. On the eastern side, a thin layer of brown clay silt with moderate pebbles ([2352]) probably represents outer bank slip. It rests between the alluvium and the main lower fill (a grey silt with frequent gravels ([2356])) which in turn overlay ([2354]), a sandy silt with frequent gravels and iron staining. Beneath this, and only seen on the eastern side of the section, was the primary weathering layer ([2364]), a grey sandy silt with iron staining. Since the section lay obliquely to the ditch profile and was never bottomed, the dimensions of this ditch remain unknown, but it is probably over 2 m wide and certainly more than 0.50 m deep. Cutting the alluvium, the later ditches are clearly post-Roman and probably represent post-medieval field ditches visible on recent maps and aerial photographs. The earliest ditch which runs obliquely to the trench appears to cut the northwest-southeast return of the rectilinear enclosure visible as a cropmark, probably of Roman date although the only finds were those redeposited in the later ditches.

Located on the eastern fringe of the cropmarks, no archaeological features were identified within (trench 4 except a thin layer [0.12-0.17 m thick] of dark, fine silt gravel with freed-clay fragments in which first-century AD Romano-British pottery occurred ([2370]). It lay by the line of a fairly thick layer of buried soil ([2373]; c. 0.25 m deep) and the al-

Figure 8.14. Queensholme: aerial photographs. Top) looking northeast across double-circuit ‘square’ (see Fig. 6.27); below) looking northwest across dromes (and ‘circles’) at southern end of system. (CUCAP EW14 & EZ23.)
Trenches 3, 8-14
A sequence of three successively recut ditches was revealed in Trenches 8/13 located across the easternmost of a pair of linear cropmarks running northwest–southeast down to Sponge Drove, evidently the large drove–trackway (Fig. 8.15). The fills of the two earliest ditches were undistinguished ([3474]), but consisted of a brown grey gravelly silt with bone, three small fragments of worked stone and abundant early Flavian pottery (Fig. 8.17). Both are “U”-shaped in profile and estimated to have been c. 1.60 m wide and 0.80 m deep. The final recut shows a “V”-shaped ditch with fairly steeply sloping sides tapering to narrow base (width 3.60 m; depth 1.40 m). This was filled by dark silts with occasional gravel and contained Flavian pottery as well as fragment from a glass vessel (12393). The sequence of ditch recutting is quite clearly from west to east, and suggests a successive widening of the drove way/trackway.

Located just to the south and west of Trench 8, Trench 13 was opened to obtain more dating material from the three ditches previously exposed; the same sequence was identified with similar pottery dates (from earliest to latest: [3477], [3476] & [3475]).

Originally a single trench (10) was placed to section the westernmost of the ditches of drove–trackway. However, upon excavation the area was shown to be almost entirely truncated by a modern strip quarry. Only in the southern edge of the trench was a ditch located ([3465]), which was further investigated by the opening of another trench (12) just to the south. There, another two ditches, on a very different east–west alignment, were also identified. The most southerly and earliest of these had fairly steep sides and a flat base (width 0.75 m; depth 0.40 m) and contained bone and later Iron Age pottery dating to the first century AC ([3471]). This was cut on its northern edge by a slightly larger and differently profiled ditch which was c. 1.40 m wide at its top with gently sloping sides that broke sharply to a narrow tapered lower cut (0.40 m wide) with a total depth of 1.40 m. LPRIA pottery of similar date and a brooch dating to the later second/early first century AC, as well as fired clay, was recovered from it ([3469]). This ditch terminated just short of the western limit of excavation. Cutting obliquely across both of these (northwest–southeast) was another ditch with fairly steeply sloping sides and a flat base (width 0.70 m; depth 0.50 m; [3470]).

While producing later Iron Age pottery, over it lay [3468]...

Figure 8.15. Queensholme: trench location in relationship to cropmarks (see Fig. 8.11 for location).

Figure 8.16. Queensholme: plan of Trench 11.

with LPRIA material and first-century AD Romano-British pottery and fired clay. Sealing this latest ditch, but running across it on a similar alignment to the present-day track (Sponge Drove), were two layers of gravel associated with (redeposited?) first-century AD
Romano-British pottery and an iron nail ([3469] & [3467]). These were separated by a band of clay which became thicker to the south and probably represents previous surfaces of this trackway ([3466]); probably modern, it was sealed only by the topsoil. The earliest of these ditches do not appear as cropmarks, being masked by Sponge Drove, but they are parallel with the other east–west linear cropmarks coming off the droveway to the north. The latest ditch is possibly the western continuation of the droveway mentioned above, but it is of very slight dimensions in comparison, and showed no sign of recutting like its eastern counterpart. However, the possible truncation to this area (e.g. through quarrying) may account for this difference.

As with Trench 10 to the east, Trench 11 was almost entirely taken up by a modern strip quarry (with accompanying redeposited Romano-British pottery [3676]) and so was extended to the south (as 14). Several features were uncovered, including a large northwest–southeast ditch and several post-holes (Fig. 8.16). The ditch varied in width (1.3–1.9 m) and in depth (0.8–1.0 m) and displayed very irregular edges and base, which is almost certainly related to its having been recut at least once and having another ditch run into it obliquely. The main northwest–southeast ditch had primary fills of dark sandy silt with charcoal ([3494]) under a sandy silt with frequent gravel lenses and charcoal flecks, later Iron Age pottery, fired-clay and quartzstone fragments ([3491] & [3492]; Fig. 8.17). Cutting this obliquely from the east (but not extending beyond it) was another ditch seen only in section and which may in fact be the continuation of that in Trench 12 ([3471]). Its fill was indistinguishable from the upper fill of the main ditch and consisted of a dark brown sandy loam with charcoal associated with LPRIA (first century AD) and pre-Flavian pottery ([3490], [3466]). Over this lay another two layers: a dark brown loamy silt with frequent pebbles which had Romano-British pottery, including the latest sherds identified (late second/early third century; [3668]), and then a brown clay loam with similar inclusions ([3493]).

Along the western edge of the main ditch was a string of 11 post-holes and/or natural hollows, over most of which was a layer of mottled grey sandy silt with chalk flecks and pebbles, fired clay (possibly oven material), an annular loomweight and LPRIA pottery ([3665]). Only a few of these features can be defined as post-holes with any certainty, and disturbance/truncation of the upper edges may account for the shallowness of many. In any case, all seem to be arranged linearly along the western edge of the ditch (Fig. 8.16). The dark nature of the fills and the layer overlying them ([3665]), along with the quantity of daub/fired clay, suggests that, if not structures, at least they lay close to an occupation area.

The main northwest–southeast ditch is almost certainly the continuation of a linear cropmark running just to the west of the paired linear discussed above but on a slightly different alignment to them (Fig. 8.13). On the aerial photograph it shows as a very thick dark line (c.10 m wide) which corresponds well with the dark stained soil in the upper fill of this ditch and that to the west over the post-holes, and may indeed suggest rich occupation-derived material along the margins of this ditch for some distance. The ditch could, therefore be acting as a major early boundary, an interpretation supported by the ditch which runs into this from the east but does not extend beyond it.
Trench 3 was located just off the southern side of Sponge Drove to pick up the westernmost of the large northwest-southeast cropmark droveway boundaries (Fig. 8.15). In the event, it does not appear to have crossed their line but lies a little too far west, picking up another feature. The profile shows a wide irregular-shaped cut (width 3 m; depth 0.90 m) which has probably been recut at least once. The primary fills were a greenish grey sandy silt with greenish-grey/white lenses, pebbles and iron staining ([2341]-[2345]). The main secondary fills ([2339] & [2340]) consisted of a greenish grey sandy silt with a pottery assemblage dating to the Later Iron Age (first century BC/early first century AD), sealed by an upper layer of brown sandy silt with orange yellow gravels ([2347]). The overburden in this trench consisted of a layer of modern dump material (bricks, mortar etc.). No alluvial layer was recorded, but this has probably been truncated by the dumping and other disturbances which may be associated with the modern quarry pits seen in Trenches 10 and 11 just to the north.

As well as the ditch, an elongated pit aligned approximately east-west was excavated (length 2.75 m; width 0.70 m); having fairly straight sides and sub-rounded ends, it showed a steep-sided cut against small bones and fragments (Payne 1972). This bias may be even more pronounced with regard to the smaller animals such as sheep/goat and pig in comparison to the larger cattle and horse. None of the ovicaprid remains could definitively be assigned to goat, and sheep was represented by five elements, so that the majority of the ovicaprids may, in fact, be sheep (henceforth all the sheep/goat and sheep material is broadly referred to as ‘sheep’). Three deer antler tine fragments were identified, of which one could be assigned to red deer (Cervus elaphus) on the grounds of size and morphology, the other two could only be identified to the general category of Cervidae (i.e. they may be fallow deer).

There are obviously problems in undertaking the analysis of the assemblage. The quantity of material is not large and the amalgamation of the contexts may be distorting the picture. Unfortunately, the small sample size and sparse data necessitates such an amalgamation. However, this may lead to a further problem: does the variation in relative abundance of material result from small sample size or a real change in abundance?

A total of 979 animal bone fragments were examined of which 312 (31.9%) were identifiable to the level of species (see Table 8.1). Most of the bones were from cattle followed by sheep, pig, horse, dog, red deer, hare, goose, duck and pike. Table 8.2 summarizes the anatomical representation data for the major domestic species. Table 8.3 presents the preservation and butchery evidence for the major domestic species. There was comparatively little trace of gnawing (less than 6 per cent), burning (less than 1 per cent) and butchery (less than 4 per cent). The majority of the butchery marks appeared to be a result of basic chopping and dismemberment of the carcasses, although there was a cattle 1st phalanx exhibiting traces of what are normally interpreted as ‘skinning marks’. (Restrictions of space preclude full tabular presentation of the species for sheep. In addition, it was possible to sex several pig mandibular canines. Butchery marks were identified and assigned, following Binford (1981), to the category of skinning, dismembering or filleting. The presence or absence of burning and gnawing was recorded to act as a gauge on preservation. Bone measurements were taken using a sliding dial caliper following the standard measurements of von den Driesch (1976). All were taken in millimetres. No detailed metrical analysis was carried out for this report, although a catalogue of all the measurable bones can be found in the archive report.

The bone was recovered entirely by hand. Sieving was not carried out during excavation and so this incomplete retrieval may bias the sample against small bones and fragments (Payne 1972). There are obviously problems in undertaking the analysis of the assemblage. The quantity of material is not large and the amalgamation of the contexts may be distorting the picture. Unfortunately, the small sample size and sparse data necessitates such an amalgamation. However, this may lead to a further problem: does the variation in relative abundance of material result from small sample size or a real change in abundance?

Animal bone
by M. Beech
For purposes of analysis, all of the material was amalgamated by phase. The bones were identified using the osteological reference collection in the Department of Archaeology and Prehistory, University of Sheffield. Sheep and goat were distinguished wherever possible employing the morphological differences given by Boessneck (1969) and Payne (1985). Bones that could not be identified to the level of species (e.g. ribs, vertebrae and long-bone fragments) could often be assigned to one of the following categories: C-H (cattle-horse size), D-S/G (dog-sheep/goat size) and S/G-R (sheep/goat or roe deer size).

Quantification was carried out using a variant of Watson’s (1979) ‘diagnostic zone’ approach, where a fragment was counted if it could be seen to belong to a proximal or distal end. Pelves were counted by the number of acetabulum/ilium fragments; vertebrae were counted by the minimum number of centra present; ribs were counted by the number of proximal articulations. Dental eruption and wear was recorded for all the mandibular teeth using Payne (1973) for sheep/goat, Halstead (1985) for cattle (an adaptation of Payne’s system for sheep/goat and Grant 1975 & 1982), along with age data from Bull & Payne (1982) for pig. Ageing of the cattle, sheep and pig post-cranial bones was carried out using the ages given by Silver (1969). Pelvess were sexed using the morphological criteria of Grigson (1982) for cattle and Boessneck (1969) for sheep.
age and dentition data; this, however, can be found in the project's archives.)

Domestic species
Cattle (Bos taurus)

Dentition: It was only possible to assign five mandibles and five lower permanent 3rd molars to exact stages. The remainder could only tentatively be assigned to the earliest possible stages to which they might belong. One mandible fell into class A, i.e. 0–1 months old. This was a tiny jaw whose 2nd milk molar was still in the process of erupting. It almost certainly represented a newborn infant fatality. This is interesting in that it suggests the existence of local husbandry. Most of the cattle appear to have been slaughtered before reaching adulthood (age classes A–E), suggesting that they were an important source of meat, although some animals were obviously kept well into adulthood (stages G–H). Such animals may have been used as dairy or draught animals, although by age stage H they may have become redundant for use as such and henceforth slaughtered.

Epiphysial fusion: Epiphysial fusion evidence for cattle suggests that the majority of the bones represented were from mature, adult animals, most of whose bones were already fused (87.9%). Only 12.1% of all the bones were unfused.

Anatomical representation: Table 8.2 lists the anatomical representation for cattle. Quite a high proportion of the identified remains were loose teeth. This may suggest that conditions favoured the preservation of teeth over that of bone, although it may simply result from the presence of relatively high numbers of mandibles which have been subsequently trampled and fragmented. The greater abundance of distal over proximal humerus and proximal over distal radius may have perhaps resulted from carnivore action, bearing in mind the presence of dog in the assemblage and the fact that some of the bones are gnawed.

Sexing: Only three cattle pelvises could be sexed using the morphological criteria of Grigson (1982). Two of these appeared to be female and one male.

Butchery and preservation: Only nine of the cattle bones showed any traces of butchery. Two mandibles had cut marks to the buccal surface of the ramus, just below the mandibular hinge, indicative of separation of the mandible from the skull; three scapulae had been chopped into the neck below the distal articulation; two humeri had cut marks to the medial side of the distal articulation and a radius was chopped to its medial side just below the proximal articulation, all indicative of dismemberment of the fore-limb (scapula-humerus-radius-ulna). Finally, a 1st phalanx had cut marks to its anterior mid shaft surface running crossways in a medio-lateral direction. The position of such cut marks is generally thought to represent traces left from the skinning of the carcass. This particular 1st phalanx has an unfused proximal articulation, so taking the ages of Silver (1969) this would mean that the animal was younger than 7–10 months (i.e. a calf). The skins of calves obviously may have been an important resource in addition to their meat. Gnawing only occurred to a small proportion of the cattle bones (c. 7%), although further gnawing may perhaps be inferred from the ratio of number of proximal/distal ends of certain bones as discussed previously.

Sheep (Ovis aries)

Dentition: Unfortunately the sample available is quite small, but the mortality profile appears to be quite similar to Payne’s model for meat production. Over 60% of the animals were killed before reaching three years of age. This would appear to suggest maximization for meat although obviously the older animals (i.e. those past the age of 3 years and perhaps past the optimum point for their meat) may possibly represent females being kept for breeding milk and males for their wool.

Epiphysial fusion: The small sample size precludes going into much detail. Similar to the cattle fusion, only a very small percentage of the bones present were unfused (5.6% of all the determinable specimens). This would appear to contrast somewhat with the dental evidence, the epiphysial fusion probably underestimating the amount of young deaths, perhaps as a result of poor preservation of young, unfused bones. There was a single example of a newborn distal tibia, suggesting that some degree of local husbandry may have been present.

Table 8.1. Quantification of the Queensholme animal bones.

<table>
<thead>
<tr>
<th>Domestic Species</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle (Bos taurus)</td>
<td>140</td>
<td>44.9</td>
</tr>
<tr>
<td>Horse (Equus caballus)</td>
<td>10</td>
<td>3.5</td>
</tr>
<tr>
<td>Sheep/Goat (Ovis aries/Capra hircus)</td>
<td>115</td>
<td>36.9</td>
</tr>
<tr>
<td>Sheep (Ovis aries)</td>
<td>5</td>
<td>1.6</td>
</tr>
<tr>
<td>Pig (Sus domesticus)</td>
<td>34</td>
<td>10.9</td>
</tr>
<tr>
<td>Dog (Canis familiaris)</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>Total number of diagnostic elements</td>
<td>305</td>
<td>31.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wild Species</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Deer (Cervus elaphus)</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>Deer (Cervidae)</td>
<td>2</td>
<td>0.7</td>
</tr>
<tr>
<td>Hare (Lepus europaeus)</td>
<td>2</td>
<td>0.3</td>
</tr>
<tr>
<td>Goose (Anser sp.)</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>Duck (Anas sp.)</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>Pike (Esox lucius)</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>Total number of diagnostic elements</td>
<td>7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

| Total number of diagnostic elements | 39 | 4.0 |

| Total number of fragments identified to species/group but without a diagnostic zone (domestic species) | 147 | 12.0 |

<table>
<thead>
<tr>
<th>Unidentified</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle/Horse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-bone fragments</td>
<td>117</td>
<td>12.0</td>
</tr>
<tr>
<td>Trunk fragments</td>
<td>59</td>
<td>6.0</td>
</tr>
<tr>
<td>Fragments</td>
<td>66</td>
<td>6.7</td>
</tr>
<tr>
<td>Pig/Deer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-bone fragments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trunk fragments</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>Fragments</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>Dog-Goat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-bone fragments</td>
<td>16</td>
<td>1.7</td>
</tr>
<tr>
<td>Trunk fragments</td>
<td>66</td>
<td>6.7</td>
</tr>
<tr>
<td>Fragments</td>
<td>18</td>
<td>1.8</td>
</tr>
<tr>
<td>Completely unidentifiable</td>
<td>6</td>
<td>0.6</td>
</tr>
<tr>
<td>Grand Total</td>
<td>979</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 8.2. Quantification of anatomical representation of the Queensholme animal bones (domestic species only).

P = Proximal; D = Distal.

<table>
<thead>
<tr>
<th></th>
<th>Cattle</th>
<th>Horse</th>
<th>Sheep/Goat</th>
<th>Sheep</th>
<th>Pig</th>
<th>Dog</th>
<th>Cattle-Horse</th>
<th>Dog-Sheep/Goat</th>
<th>Sheep/Roe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horn</td>
<td>1</td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mandible</td>
<td>25</td>
<td></td>
<td>23</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maxilla</td>
<td>2</td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mand.tooth</td>
<td>19</td>
<td></td>
<td>10</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.tooth</td>
<td>20</td>
<td></td>
<td>9</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trunk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlas</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cervical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thoracic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacrum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caudal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertebra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rib</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fore-Limb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scapula</td>
<td>8</td>
<td></td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humerus p.</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humerus d.</td>
<td>5</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius p.</td>
<td>3</td>
<td></td>
<td>5</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius d.</td>
<td>-</td>
<td></td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulna</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hind-Limb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelvis</td>
<td>10</td>
<td></td>
<td>9</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur p.</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur d.</td>
<td>5</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tibia p.</td>
<td>5</td>
<td></td>
<td>10</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tibia d.</td>
<td>2</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astragalus</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcaneum</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tarsal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metatarsus p.</td>
<td>3</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metatarsus d.</td>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metatarsus p.</td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metatarsus d.</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phalanx 1</td>
<td>5</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phalanx 2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phalanx 3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td>10</td>
<td>115</td>
<td>5</td>
<td>34</td>
<td>1</td>
<td>27</td>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>

(Diagnostic elements)

Anatomical representation: Table 8.2 lists the anatomical representation of sheep. Similarly to cattle the greater proportion of the identified remains were mandibles and loose teeth. This may be due to factors of preservational bias. The rest of the bones appear to show a picture of low frequency for bones expected to survive less well (e.g. proximal humerus, distal radius and distal metapodials). The only anomaly in the pattern that we might question is that there is a slightly higher proportion of proximal to distal tibias than one might normally expect. The scarcity of the smaller bones (carpals/tarsals and phalanges) may be a result of poor retrieval of material on the site due to the lack of sieving.

Sexing: It was only possible to sex four of the pelvcs using the morphological criteria of Boessneck (1969). Two of these appeared to be male and two female.

Butchery and preservation: Only one of the sheep bones showed any trace of butchery, a radius having traces of cut marks to its
upper posterior mid shaft on its lateral side adjacent to the distal ulna facet. Such marks may have resulted from the separation of the radius-ulna lower joint, where the distal ulna joins onto the posterior radius. Gnawing only occurred to a few of the sheep bones and no burning was present.

Fig (Sus domesticus)

Dentition: It was only possible to age two of the mandibles. Both fell into group 2, aged 19-23 months (i.e., with permanent premolars erupted, 2nd molars in wear and 3rd molars close to erupting or in the early stages of eruption and wear). Both animals would probably have been killed during or soon after their 2nd year. Such juvenile adult was present. None of the horse bones showed any signs of into group 2, aged 19-23 months (i.e., with permanent premolars erupted, 2nd molars in wear and 3rd molars close to erupting or in the early stages of eruption and wear). Both animals would probably have been killed during or soon after their 2nd year. Such juvenile adult was present. None of the horse bones showed any signs of

Sexing:

It was possible to sex three mandibular permanent canines; level.) It was only possible to age two of the mandibles. Both fell fused at both its proximal and distal articulations, almost complete femur fused at both its proximal and distal articulations, a fused distal tibia fragment, a complete navicular cuboid and an almost complete fused 1st phalanx. All of the above bones suggest that at least one adult was present. None of the horse bones showed any signs of burning or butchery. However, gnawing was observed on three of the specimens: slight dog tooth puncture marks were visible to the scapula blade margin and chew marks on its distal articulation. Chew marks could also be seen on the distal tibia and 1st phalanges.

Anatomical representation: Table 8.2 lists the anatomical representation for pig. As with cattle and sheep the mandible/maxilla/loose teeth category occurs in relatively high proportions in comparison to other elements. Little can be said about the representation of the other pig bones as they are so few in number.

Buclery and preservation: Only four of the pig bones showed any trace of butchery. A mandible had been chopped through the base of its ramus in a buccal-lingual direction; a humerus had traces of cut marks just below its proximal articulation on the medial side; a ulna had cut marks on the lateral side of its proximal articulation; and a femur was chopped through at both its proximal and distal ends leaving just the mid shaft tube. All of these chops and cuts probably represent basic disarticulation of the various parts of the carcass. No gnawing or burning was present to any of the pig bones.

Horse (Equus caballus)

Horse was represented by eight bones (3.3% of identifiable species): a worn lower permanent incisor, a worn permanent 3rd and 4th premolar, a scapula with fused distal articulation, a complete radius fused at both its proximal and distal articulations, an almost complete femur fused at both its proximal and distal articulation, a fused distal tibia fragment, a complete navicular cuboid and an almost complete fused 1st phalanx. All of the above bones suggest that at least one adult was present. None of the horse bones showed any signs of burning or butchery. However, gnawing was observed on three of the specimens: slight dog tooth puncture marks were visible to the scapula blade margin and chew marks on its distal articulation. Chew marks could also be seen on the distal tibia and 1st phalanges.

Dog (Canis familiaris)

Dog was represented by a single bone fragment, the mid shaft of an ulna. Although the proximal articulation was broken off, purely on the grounds of size it would appear to come from a mature animal.

Wild species

Red deer (Cervus elaphus)

A single large antler tine fragment of red deer was identified. (Two further smaller tine fragments have only been identified to deer, Cervidae, as their condition is too poor to determine beyond this level.)

Hare (Lepus europaeus)

Hare was represented by a mandible of adult size.

Bird

Of three bird bones, two were identifiable to species: a goose (Anser sp.) 1st phalanx (complete) and a duck (Anser sp.) carpometacarpus (complete). A single fish bone was identified, a lower dentary of pike (Esox lucius).

The animal bones from Queensholme, although relatively fragmented, were in quite a good state of preservation. This might suggest that comparatively little post-depositional destruction had taken place to the assemblage as a whole, and their relatively rapid burial. Some carnivore destruction, probably by domestic dogs, evidently had affected some of the bones (5.8 per cent of identifiable elements) and their presence may be further inferred by the preponderance of certain elements over others, as discussed above. The marked paucity of smaller bones, such as of sheep and pig, may be due to poor retrieval from lack of sieving, but also perhaps to carnivore destruction.

The pattern of deposition for the major domesticates (cattle, sheep

Table 8.3. Preservation and butchery evidence for the Queensholme animal bones.

<table>
<thead>
<tr>
<th>Preservation:</th>
<th>Gnawed</th>
<th>Burnt</th>
<th>Neither</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>14</td>
<td>7.3</td>
<td>1</td>
<td>92</td>
</tr>
<tr>
<td>Horse</td>
<td>3</td>
<td>0.5</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Sheep/Goat</td>
<td>4</td>
<td>3.1</td>
<td>125</td>
<td>69.9</td>
</tr>
<tr>
<td>Pig</td>
<td>-</td>
<td>-</td>
<td>34</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>5.8</td>
<td>343</td>
<td>94</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Butchery:</th>
<th>Cut</th>
<th>Uncut</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>9</td>
<td>4.7</td>
<td>183</td>
</tr>
<tr>
<td>Horse</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Sheep/Goat</td>
<td>1</td>
<td>0.8</td>
<td>128</td>
</tr>
<tr>
<td>Pig</td>
<td>4</td>
<td>11.8</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>3.8</td>
<td>351</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Butchery (Type):</th>
<th>Chopped</th>
<th>Dismembered</th>
<th>Skinning</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>4</td>
<td>44.4</td>
<td>1</td>
<td>12.2</td>
</tr>
<tr>
<td>Horse</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Sheep/Goat</td>
<td>2</td>
<td>50</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Pig</td>
<td>6</td>
<td>42.9</td>
<td>7</td>
<td>50</td>
</tr>
</tbody>
</table>

438
and pig) appears to be broadly similar, all deposits containing a high proportion of bone from the heads. This would suggest that the assemblage is largely composed of deposits of primary butchery waste. This would appear to be confirmed by the butchery evidence, which suggests that basic chopping and dismemberment of the animal carcasses was the most common practice. No cut marks were observed as filleting according to Binford (1981) were observed to any of the bones examined. In the case of cattle another explanation for the accumulation of mandibles might be the result of hide-working. A single tantalizing piece of evidence found was the cattle 1st phalanx bearing traces of apparent 'skinning cut marks'. This could explain the concentration of head elements, disposed of after hide removal. However, one must stress caution in making such an interpretation, as mandibles and teeth may have preferential survival because of their relative hardness and resistance to decay.

Cattle appear to have been principally slaughtered before reaching adulthood (60 per cent according to the dentition evidence), although some adult animals survived into old age. This can also be seen from the epiphyseal fusion data, although this may understate the amount of young deaths. Sheep also appear to have been mainly killed during the first three years of life (over 60 per cent according to their dentition), some adult sheep being killed in middle age. Again the epiphyseal fusion suggests a greater number of mature, adult animals, but this once more may not accurately represent the younger animals. The sparse dental and epiphyseal evidence for pig suggests the killing of animals at quite a young age, probably during their second year. The few adult horse bones presumably represent work animals, bearing in mind that no traces of butchery were observed (i.e. they do not appear to have been eaten). The presence of dog within the assemblage is evident, not only from the single occurrence of one of its bones, but also from gnawing and puncture marks observed on others. Domestic dog may undoubtedly have influenced the composition of the bone assemblage, being the principle scavenger of any settlement waste.

Of the small amount of bones recovered from wild animals, red deer (Cervus elaphus) was represented by a single antler tine fragment. No post-cranial material was found so there is no direct evidence for whether venison was consumed. Obviously, the antler could have been naturally shed, collected or brought in from elsewhere, and would have been an important resource for the manufacture of tools and artefacts. Hare (Lepus europaeus), goose (Anser sp.), duck (Anas sp.) and pike (Esoc lucius) are present, but to what extent they were consistently exploited cannot be ascertained as the lack of sieving during the excavation means that we cannot assume that the numbers in which they occur here are any measure of their relative importance in the diet.

In conclusion, in terms of the nature of animal exploitation at Queensholme, pigs appear to have been concentrated on for meat production, while cattle and sheep seem to have been exploited partly for their meat but also to some extent for their important secondary products of hide/wool and milk. There is a limited amount of evidence for local husbandry (the neonatal calf and sheep/goat specimens). The evidence of Roman animal husbandry at Queensholme would appear to be broadly similar to that of contemporary settlements in southern Britain. The summarized evidence available for Roman animal husbandry (King 1978; Malby 1981) suggests that:

1. Meat production became more important in sheep management during this period.

| Table 8.4. Queensholme: the Iron Age and Roman Iron Age tradition pottery. |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| **Fabric type** | **Ditch 1** | **Trench 1** | **Trench 3** | **Trench 10** | **Trench 11** |
| Chalk | - | - | - | - | 26 |
| Shell | 57 | 31.6 | 21 | 27.6 | 760 |
| Shell & Sand | 14 | 4.5 | 14 | 4.5 | 1007 |
| Sand | 220 | 72 | 55 | 73.4 | 1721 |
| Limestone | 12 | 1.7 | 6 | 2.6 | 84 |
| Grog | - | - | - | - | 257 |
| Vegetable | 14 | 4.5 | - | - | 42 |
| **Surface treatment** | | | | | |
| Scored | 94 | 30.8 | - | - | 624 |
| Burnished | - | - | 743 | 19.2 | 159 |
| Combed | - | - | 49 | 1.3 | 154 |
| **Technology** | | | | | |
| Wheel made | 10 | 3.3 | - | - | 303 |
| **Basic Statistics** | | | | | |
| Number | 20 | 6 | 140 | 184 | 101 |
| Weight | 305 | 71 | 3889 | 2464 | 1166 |
| Mean sherd wt | 15.3 | 11.8 | 27.8 | 13.4 | 11.5 |
| Rims Eves | 0.08 | 0 | 1.97 | 1.52 | 0.07 |

439
2. Most cattle were allowed to reach maturity and were not simply raised for their meat but were probably used as working and dairy cattle.

3. Most pigs were not killed until at least their second year, the intensity of pig husbandry probably not being very high in comparison to the modern period.

The Queensholme assemblage is not incompatible with this general model. Unfortunately detailed archaeological evidence for this particular region of the country, during the period in question, is relatively poor. The few bone assemblages that have been studied in the central Fenlands suggest that the settlements practised an intensive stock economy, sheep being the consistently most important livestock (40-70%), followed by cattle (22-45%), pig (3-6%) and horse (3-12%). Sheep were kept primarily for their wool. The assemblage from the Snow's Farm shrine (Beech 1987 Table 8.5. Queensholme: Iron Age pottery fabrics (by weight).)

<table>
<thead>
<tr>
<th>Fabric</th>
<th>Trench 1</th>
<th>Trench 3</th>
<th>Trench 10</th>
<th>Trench 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>26</td>
<td>55</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>Flint</td>
<td></td>
<td></td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>G1</td>
<td>10</td>
<td></td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>G2</td>
<td>74</td>
<td>27</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>LS1</td>
<td>253</td>
<td></td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>LS2</td>
<td>141</td>
<td>21</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Q1</td>
<td>6</td>
<td>27</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Q2</td>
<td>727</td>
<td>496</td>
<td>207</td>
<td>207</td>
</tr>
<tr>
<td>Q3</td>
<td>144</td>
<td>299</td>
<td>207</td>
<td>207</td>
</tr>
<tr>
<td>Q4</td>
<td>422</td>
<td>196</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>Q5</td>
<td>14</td>
<td>14</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Q6</td>
<td>162</td>
<td>358</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>Q7</td>
<td>7</td>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Q8</td>
<td>45</td>
<td></td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Q9</td>
<td>27</td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Q10</td>
<td>201</td>
<td>41</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Q11</td>
<td>746</td>
<td>21</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>Q12</td>
<td>98</td>
<td>281</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>Q13</td>
<td>81</td>
<td>89</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Q14</td>
<td>387</td>
<td>45</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>Q15</td>
<td>44</td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>S1</td>
<td>21</td>
<td>28</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>S2</td>
<td>48</td>
<td>62</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>S3</td>
<td>56</td>
<td>15</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>S4</td>
<td>19</td>
<td>125</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>S5</td>
<td>97</td>
<td>27</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>S6</td>
<td>8</td>
<td>38</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>S7</td>
<td>42</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandy</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shelly</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>3889</td>
<td>2464</td>
<td>1166</td>
<td>1166</td>
</tr>
</tbody>
</table>

and Chapter 7) suggests broadly the same pattern of species representation, although obviously this type of site is not necessarily comparable with the settlement data. It may be interesting to note that at Queensholme cattle and sheep appear to be broadly similar in numerical importance. This may be a result of different environmental/economic conditions prevailing upon this site. Unfortunately, it may be simply due to poor retrieval of material, in other words a lack of sieving, thereby leading to under-representation of the smaller animals (i.e. sheep/goat), and inflating the importance of the larger animals (i.e. cattle). This problem can only be resolved by the analysis of larger, sieved samples of bones from Roman settlements in the region.

Iron Age and Iron Age ‘tradition’ pottery
by J.D. Hill

The assemblage consists of 451 sherds weighing 7.895 kg with a mean sherd weight of 17.9 g (median sherd weight = 12 g). While there are only 14 base sherds in the assemblages, weighing 0.483 kg (1.72 Eves), there are 97 rim sherds (1.654 g; 3.64 Eves). This material came from five trenches (see Tables 8.4 & 8.5 for basic statistical breakdown), and largely from the fills of ditches, although a large proportion of the pottery from Trench 3 was deposited in a large pit. The preservation of the material varies considerably from large, fresh sherds and partial profiles from the pit and a few well-preserved ditch deposits, to small, abraded and clearly redeposited material in later features. Some of this pottery was found in contexts also producing well-preserved sherds of Roman pottery. In some cases the Iron Age pottery was definitely redeposited in these features; in others it was clearly Iron Age tradition pottery made and broken after the Roman Conquest. In other instances it is harder to distinguish the two. Recovery was not as good as at HAD V or other sites discussed in this volume. The higher mean sherd weight compared with these sites and the preponderance of rims (20.1 per cent of the assemblage by weight) suggests the assemblage is biased towards the collection of relatively large and diagnostic pieces.

The majority of the pottery comes from two trenches (Trench 3, 49 per cent and Trench 10, 31 per cent) with only a minute proportion from Trench 1 and investigations across the double-ditched enclosure. The bulk of the material from Trench 3 came from a single feature, the large pit [2335], which contained 2514 g of pottery (64 per cent). The rest from this trench came from the primary and secondary fills of the ditch found therein.

The pottery was recorded using the same methodology as that used for the material from HAD V.
Chapter 10

Reclamations: Communities in the Level

So forget, indeed, your revolutions, your turning-points, your grand metamorphoses of history. Consider, instead, the slow and arduous process, the interminable and ambiguous process — the process of human sitation — of land reclamtion.

G. Swift Waterland 1984, 8; emphasis added

Given the fragmented picture and arbitrary framework of the Haddenham landscape studies, it would be inappropriate to conclude with any manner of sweeping overview of pan-Fenland usage. We did not investigate the totality of any one period-based landscape system, if such a thing is possible given that connections will invariably lead outwards. Therefore, more 'path-like' than grandly systematic, let us instead consider what are amongst the major themes that the sequence reflects upon.

Domestic frameworks: bounding land

As unquestionably functional as are the drains which have divided the Fenland for the least three centuries, in their regularity they are symbolic of the new capital and landscape attitudes which lay behind the transformation of these marshland 'wastes'. Its chequerboard landscape has marked affinities to the grid-iron of roads and townships laid out by British surveyors across the nation's far-flung colonies of the same period. A 'signature' of colonization, they speak of efficiency, the denial of 'past time' and effectively proclaim a clean slate (see Evans 1997b). While these are themes that will be further explored in the penultimate section of this chapter, critical at this stage are the potentially symbolic attributes of all boundaries by the virtue that they divide. This, for example, is something that both the causewayed enclosure and Snow's Farm shrine sites share: marking edges and keeping the world at bay, be it the 'wild', the forest or the 'wet'.

Within a strictly regional context any discussion of domestic occupation could essentially be considered as a charting of the rise of ditching/dykes to the point that, as outlined by James, these were 'the common form of fence' in the region. At this juncture the advent of Bronze Age field-systems and Iron Age settlement enclosures and the eventually 'great' Roman radial systems could be rehearsed in the guise of a vaguely evolutionary schema relating the greater frequency and scale of such ditching to deteriorating environmental conditions. Attractive though this logic is, it simply is not valid. These trends are not regionally specific, and to a greater or lesser degree the same ditching sequence can be traced through such diverse landscapes as, for example, the Thames Valley or the Midlands.

It has elsewhere been argued that one of the shortcomings of archaeological practice within the region has been to interpret 'national' phenomena, such as causewayed enclosures, Bronze Age field-systems or Iron Age 'hillforts', strictly in response to local environmental factors (Evans 1987). The rise of ditched boundaries obviously relates to broader changes variously concerning the character of 'gathering', landholding/tenure and, eventually, property. Although obviously undergoing regional 'translation' (i.e. adaptation), they cannot just be identified with drainage and as only a product of the Fenland environment.

Within a regional context, sites like HAD V or the Snow's Farm shrine continue to be largely unique in their substantive representation of wetland resources. Therefore it is ironic that, against this more widespread legacy of increasing ditch-division, it is the ubiquitous 'one-offs' that may tell most directly of the region's sequence itself. At one end of the scale there is the Flag Fen platform (Pryor 2001); at the other, the use of the crowns of earlier barrows as in-fen stations. In this vein, there has been discussion of what is missing from the region's later prehistory in contrast to comparable continental sequences (see Evans 1997a concerning the Iron Age cultural evaluation and responses to the 'wet'). If population pressure was in any way a significant factor, where is the Fenland equivalent of marsh-fast settlement (e.g. terpen) or evidence of co-ordinated ditching/embankment to keep water levels at bay?
The Haddenham sequence certainly reflects upon the changing character of the domestic and its interaction with the monumental. On the one hand, there are early Neolithic ‘campsite’ pitting clusters such as suggested from HAD VIII investigations, and those more recently excavated at Barleycroft Farm. These stand in stark contrast to the obviously domestic nature of the terrace’s Iron Age occupation. Yet, however permanent and ‘robust’ its settlement, even this was supported by much ‘going out’ into the landscape (short-lived displacement). Whilst it is tempting to trace the processes of ‘settling down’ within the Haddenham landscape, subsequent research in the region and elsewhere in Britain shows the hinge-point in these discussions to be the later Bronze Age. Despite caveats pertaining to project contingency, we simply failed to adequately problematize this period’s usage on the Delphs and, without this evidence, there is little scope to address this broad issue. As a consequence, however, this has now become the key theme of subsequent research within the lower Ouse Valley (Evans & Knight 2000: 2001).

Although a complete framework of the terrace’s settlement history was not achieved, its sequence offers insights into the nature of land division and common holding. A sense of familial tenure is most clearly expressed in its later Iron Age occupation and must underpin the layout of the HAD V and VI compounds with their adjoining field-systems. This may not have been a matter of ‘property’ inasmuch as it could not have been sold, but rather rights to these plots would have been maintained through patterns of residence and inheritance. Of course, details of this system’s operation are unknown; particularly whether the seasonal use of adjacent water meadows and stands of marshland were exclusive or in common. Be this as it may, the sequences of house rebuilding and the cumulative scale/character of ditched settlement compounds certainly indicate considerable long-term investment within their plots.

Opposed to this are those periods when the terrace was a place of gathering; primarily in the earlier Neolithic and Roman times as respectively expressed through the causewayed enclosure and Snow’s Farm shrine. As will be argued, the character of the terrace’s usage differed markedly between the two insomuch as during the Neolithic it can be considered a ‘central place’ whereas in the Roman it can only have been marginal. Nevertheless, these periods see the floruit of mass ritual expression and in neither did the terrace evidently host substantive domestic settlement. The land was then presumably held in common by those ‘mass’ communities drawn to participate in the ritual centres. Given this, it seems reasonable to suppose that it was ritual that bonded these dispersed groups and may have provided a framework through which common rights were negotiated.

Accepting this logic, what becomes difficult to envisage is the area’s usage in the later Neolithic/earlier Bronze Age. Evidently practising a mobile economy, aside from individual barrow construction, within the context of the Delphs there seems little evidence of mass communal gathering (inter-lineage; however, see below). The period’s barrows and ring-ditches would have also served as markers to announce group rights to seasonal pasture. What is equally interesting is the potential role of the Snow’s Farm barrow in the first century AD. If ignoring the possible ritual attributions of the HAD IV enclosure and accepting that it relates to seasonal rights to the Delphs in the wake of the abandonment of the HAD V and VI settlements through flooding, the scant evidence of usage and local off-terrace settlement densities from this time would not suggest competition for the terrace by different groups. Rather, it was probably seasonally exploited in a manner suggesting the opportunism of a single community whose home settlement may well have lain on the Willingham/Cottenham skirtland (e.g. Queensholme). If so, it may be relevant that a site immediately beside the barrow was chosen for the one substantial enclosure of this period (HAD IV) as it also suggests a need to mark or reinforce only seasonally occupied lands.

The sequence therefore tells of the key role played by ritual in the negotiation of common rights/access, of which (apart from specific mortuary activities) en masse gathering is the most obvious expression. Leaving aside the problems of the status of HAD IV, during the later Iron Age — when there was the most clear expression of land tenure on the Delphs — ritual activity (or at least deposition therefrom) seems largely to have moved into the house as attested through the marking of doorways. What again highlights is the need to investigate further later Bronze Age/earlier Iron Age occupation as apparently marking the interface between communal and more obviously domestic or rooted ‘lifeways’.

Ritual structures

Comparing the HAD V and Snow’s Farm shrine faunal assemblages the predominance of sheep within placed deposits is striking. It is the only animal used in the Iron Age house-threshold deposits (and the only obviously ‘special’ animal settings on the site whatsoever) and was also the prime ‘messenger’ of sacrifice within the Romano-Celtic shrine. As discussed, in the case of the Iron Age settlement it seems remarkable that, given
the range of wild species that were evidently taken, these otherwise present ‘exotics’ seem not to have been deployed for ritual purposes. Similar sheep deposits have been found set at thresholds of the Colne Fen Iron Age roundhouses (Regan & Evans 1998; 1999). This may suggest a range of local ritual practice and tell of its ‘language’ inasmuch as its scale was beyond the level of the immediate household. It is one thing for a community to uniquely practice a range of economic activities (‘catch’ skills) so as to have access to the extraordinary array of wild life represented at HAD V, but quite another thing to use them ritually (this being despite the totemic affinities of such creatures in other periods). If they had, would a larger community have been able to read their intent? All this suggests that ritual communication operates at a wider level of social group interaction than the daily community.

In the case of the Snow’s Farm shrine, while sheep clearly predominate as the chosen animal for ritual activity, other domestic species were also deployed (cattle, pig and horse). Though a range of domestic fowl and exotic birds were also deposited, apart from boar, game animals were not. The inclusion of smaller birds (e.g. coot, duck and domestic fowl) has already been discussed in terms of their familial ‘feast’ and sacrificial potential (i.e. the smallest acceptable ‘animal price’ for ritual participation). However, the occasional inclusion of ‘big’ birds (owl, cormorant and eagle) requires further explanation. They may, in fact, have had analogies with the sheep as ‘messengers’ through their capacity for flight (i.e. flying to the gods). However, their role may not be directly comparable inasmuch as they were largely placed around the peripheries of the compound, as opposed to the sheep sacrifices which were set both within the compound’s northwest corner and in the interior of the shrines per se. This may suggest a different translation of basic ritual practices; perhaps an individualist interpretation of rites by a specific priest or a less formalized expression by the local community (or sections thereof). Given that these species do not seem to be present on contemporary domestic assemblages (cf. Queensholme), this may have involved a re-configuration of local identity vis-a-vis the representation of the immediate landscape within ritual. If so, its metaphors clearly related to concepts of flight as deposition evidently did not involve marshland land mammals.

While preference was clearly being exercised, there is little sense of formal structuralist opposition of the placed deposits within either the Iron Age settlement or the Romano-British shrine. In the former, the marking of house doorways by sheep is not balanced by any similar demarcation of, for example, the hearth (the centre being the only other obvious point of distinction within a round structure). The use of sheep in thresholds suggests foundation deposits offered up to bring good fortune to the house and its inhabitants and/or to exclude evil from its interior. Similarly, while ritual deposition within the shrine was probably proscribed (i.e. governed by priests), given the range of species that were ultimately involved, it does not seem to have been particularly exclusive. Considerable flexibility (and compromise) seems to have been admitted into its practices.

Aside from the basic principle of sacrifice and probably the augury of entrails (and accompanying feasting), any other reading of these rites seems arbitrary. There is no apparent ritual expression or ‘problematisation’ of, for example, the wild vs. the domestic or the living and dead; nor, for that matter, gender. In short, none of the classic oppositions readily prone to cosmological modes of structuralist analysis. This is not to say that these deposits were not accompanied by elaborate performances (in which multiple ‘opposites’ may have been bound up), but just that they are without obvious material expression.

Apart from the occurrences of coins with the sheep burials in the Snow’s Farm shrine, in terms of later ritual practices we do not seem to see ‘packages’ whose assembled components suggest any kind of ‘message’. In the instance of the shrine, the coins appear to be payment carried by the animal messenger and not a matter of an associative material code (e.g. bone+metal = ?). Instead, if there is an underlying theme it is animal sacrifice; the distinguishing criteria is whether it was a bodily token that was deposited (with the flesh consumed) or the complete carcass. This is not a matter of direct material culture ‘play’, but economic sacrifice reinforcing the collectivity of the social group (i.e. feasting). What goes into the ground is not the prime concern but its results amongst the living (the binding of the social group and the reading of future action).

Also requiring overview is the treatment and place of the dead. Whereas in the case of the causewayed enclosure human skeletal remains were clearly a part of ritual placement, while present and presumably used in rituals on the Iron Age settlement, they do not seem to have been subject to intentional deposition as such. Representative of more formal cemetery-based interment of the period, at first glance it may seem that the dead had no role in the Roman shrine. Yet, as discussed, crossing of the river may have had connotations with outer worldly journeys and surely the siting of the shrine on the barrow (and perhaps more directly on its secondary cremation cemetery) would itself have provided much of the complex’s
Chapter 10

associative resonance. Of course, in this context the riverside barrow cemetery must not be overlooked, which is extraordinary in its linearity and density, and that it occurs on only one bank of the palaeochannel. Linked with Neolithic antecedents, from the earlier Bronze Age this seems a matter of deploying the dead at the wet edge: the marking of a major environmental and cultural divide.

Earthwork continuities: the place of ritual

The fens, more than most landscapes, saw discontinuity in its settlement record. Successive inundations, both freshwater and marine, interrupt its sequence. A landscape to leave and to be returned to, from at least the first millennium BC settlement would have demanded weighing the economic return of marsh resources and the availability of land against environmental risk: the threat of flood. Yet prior to its ‘blanket’ inundation in post-Roman times, would it ever have been a blank slate without cultural association? In their in-roads Neolithic communities would have been aware of a Mesolithic past; the traces of the causewayed enclosure would be apparent, at least until the later Neolithic/earlier Bronze Age, and the siting of the HAD III barrow may have been in reference to it, just as the Snow’s Farm Romano-Celtic shrine was later sited upon that barrow.

As in the case of the Roman stock enclosure constructed against the HAD V enclosure in its earthwork form (or the evidence of Iron Age ‘camping’ on Bronze Age barrows), earthwork relationships can be pragmatic (i.e. seeking dry elevation). Equally, they can be associative and appeal to mythic genealogies of place. Again, the Snow’s Farm complex offers the best exemplar, albeit ambiguous (in keeping with the character of cultural landscape relations generally). If the adjacent HAD IV enclosure is considered an Iron Age shrine, then the barrow complex demonstrates an unbroken ritual tradition over two-and-a-half millennia (the site’s earlier occupation/visitiation in the Neolithic seems essentially domestic): earlier Bronze Age barrow>later Bronze Age cremation cemetery>Iron Age shrine>Romano-Celtic shrine. If, alternatively, the eastern Iron Age enclosure was of essentially domestic function (though with a ritual component), then this associative strand was interrupted. It could, of course, be argued that the siting of the Roman shrine on the earlier barrow was itself entirely pragmatic and should be seen as an attempt to elevate the structure above the threat of flood waters. Yet this could also be a case of intentional reference to a, by then, ‘safely’ distant mythical past (e.g. ‘marking of the burial of the giant who stilled the waters’ or whatever). As such, it denied or ignored an immediate and potentially ‘dangerous’ Iron Age past, relating as it probably would to lost lands and rights (whatever its specific function HAD IV was then clearly sealed). Ultimately, we cannot know this. However, much as the Snow’s Farm complex resonates to earlier surrounding monuments and influences later sites, it is a matter of cultural reference — slippery contexts and ambiguous histories.

Providing the narrative strand to this volume, can we nevertheless situate the Snow’s Farm complex through time in relationship to its participating communities, contemporary monuments and ‘historical’ associations? In short, can we map its changing ‘place’ within the cultural landscape? Any such measure of distance and proximity must, of course, be tentative and subject to recovery bias. While for example the HAD VII Beaker ‘community’ may have built the barrow, other contemporary ‘sites’ may have gone unnoticed. Equally, although the members of the Cut Bridge Farm enclosure and other Willingham fen-edge settlements (e.g. Queensholme) surely participated in ritual at the Romano-Celtic shrine, other cropmark enclosures scattered around the northern fringes of the Delphs (that were untested) may have also been within its draw.

Located as an outlier west of the main Ouse terraces barrow cemeteries, it must be presumed that the Snow’s Farm barrow’s proximity to the causewayed enclosure 140 m to the northeast was intentional, and this supports the supposition that the earlier enclosure was then still visible in earthwork form. In its two phases of active usage the barrow lay c. 200 m from contemporary settlement: respectively the HAD VII Beaker site and HAD VIII enclosure. This could be considered a safe distance from settlement but still allowing ready access to and identification with ‘their’ monument (i.e. could be pointed to and easily seen).

Thereafter the context of the barrow per se switches, presumably becoming a place of association but not active ritual. Here lies the hinge-point of its sequence: the attribution of HAD IV and whether it was an Iron Age shrine. Although its ceramic associations suggest that it is unique within the context of the Delphs, and certainly there is evidence of selective deposition, there is little that would definitively indicate a distinctly ritual function. Yet, ultimately, given its proximity to the barrow (only 30 m) and the distinct sub-square form of its inner eavesgull, the barrow complex resonates to earlier serif monuments (i.e. could be pointed to and easily seen).
ment that ultimately 'empowered' and distinguished it. The very fact that this enclosure was not actually sited upon the barrow proper may have been out of both respect and fear. Whether or not some 400–600 years later they were actually aware of its later Bronze Age cremation cemetery, it could well have had very alive associations as a place of the dead; 'ghosts' may have as much determined its stand-off as empowered its rituals. (If accepting the alternative reading of this site as, in effect, the abode of Iron Age herders then it could be argued that its proximity to the barrow relates to the latter's role as a prominent landscape marker within a transhumant cycle. In this manner, the monument would have reverted to a role not unlike that advocated for ring-ditches/barrows within patterns of later Neolithic/earlier Bronze Age residential mobility.)

Finally comes the site's Roman interrelationships, when the barrow was reinvested as a shrine. These are much more distant; it lay in (pasture) 'outlands' c. 0.5 km from contemporary settlement and evidently became a place to visit at times during the ritual calendar. At the most basic level it could be argued that this distancing of ritual also relates to its significance in contemporary life (i.e. a more distinct categorization than in Iron or Bronze Age times). The nature of ritual then changes and, directed by appointed priests, would have been more formal and specialized (and consequently its rituals 'speak' more clearly). It could be argued that this phase of usage was, based on the distribution of fen-edge shrines, inherently political and divorced from the immediate 'localism' of earlier practices. From this sequence a schema of the monument's changing status could be proposed:

- Bronze Age 'Active'
- Iron Age 'Associative'
- Romano-British 'Political'.

Yet, while internally neat in its 'packaged' titles, this sequence begs the question whether the distribution of Roman shrines was only 'political'. By this is meant the formal re-organization of rites (potentially involving erasure and imposition/substitution) intentionally sympathetic to the goals of civic administration. The key point is that, though the Roman shrine at Snow's Farm was probably a political gesture, it surely resonated with the locale as a place; its values were probably also associative, and certainly it hosted much active ritual.

Although unavoidably arbitrary in its measurement of cultural space, Figure 10.1 depicts the changing situation of the Snow's Farm complex in the terrace landscape both in terms of the distance to contemporary settlement and previous earthwork associations. What is critical, at least in this case, is that although through time (obviously influenced by environmental factors) settlement lay at a greater remove from the ritual complex, its associative linkages became more immediate (Fig. 10.2). Eventually the shrine was sited on the barrow: the association is direct and the linkage between the sites was then one-to-one.

Figure 10.1. Ritual distance. The three figures illustrate the changing context of the Snow's Farm complex through time. Single lines indicate its proximity to contemporary settlements/sites; the double-line arrows, its relationship to earlier monuments which would then be extant as earthworks (see Fig. 10.2).
Figure 10.2. Ritual measure. The tabulation of the Figure 10.1 distances demonstrates that although the distance to contemporary settlement increases through time, earthwork association becomes more immediate so that by the second century AD the shrine was sited directly upon the Bronze Age barrow.

It could be argued that this itself reflects the changing situation of the barrow complex. Through time as earthwork traces accumulated (and there was a greater emphasis upon ditched enclosure), associations would have had to have been more direct if coherent ‘meaning’ was to be read. Moreover, in Roman times when the terrace landscape and shrine became a place to visit and were apparently not lived in, there would have been a greater need for a directness of any such association. Meaning would not have been conferred on a daily basis and, if it was to be channelled (and politically deployed), then there would need to be a greater explicitness of linked ‘monument’ siting.

An opposing tack could also be proposed for this sequence as is embodied in the Hermitage Farm barrow sequence. Evidently an equally meaningful place, it was much redefined and elaborated over the c. 1000 years from the earlier Bronze Age to the end of the second millennium, when thereafter all but its crown would have been lost to the marshes. By Roman times the Snow’s Farm barrow may well have been the last ritual monument visible within the immediate Haddenham landscape. So isolated, the very loss of its context (i.e. larger barrow cemetery association) may have participated in its later evaluation and subsequent re-investment.

Environmental and landscape sequences

At the most basic level cultural geographies are invariably, if approximately, both concentric and linear. Landscape evaluation will always involve concepts of inside/outside and the routes to achieve places: paths and corridors between core zones and their peripheries. Although risking caricature and the blurring of categories (and distributions), the sequence of early usage on the Upper Delphs and its changing situation within the broader physical and cultural geography of the Haddenham lowlands can be outlined. The determination whether it was the Ouse or fen (edge) that provided its dominant structuring principle has, to some degree, draw upon the evidence of other excavations within the vicinity. Nevertheless, at least in the immediate area this shift would essentially seem to fall between the Bronze and Iron Ages. To some extent this is to fly in the face
of accepted Fenland-use orthodoxy as established by the Peterborough sequence: the sense that the Fensgate field-system and the associated Flag Fen platform are unquestionably a Fenland phenomenon. Despite their showing little direct economic utilization of the 'wet', this is indisputable; Flag Fen was, after all, situated out in the marsh. However, the Ouse sequence may have differed. At the broadest level of landscape analysis, although having outliers, there is no denying the essentially riverine distribution of the Bronze Age barrow cemeteries in the area. Yet the evidence suggests something 'more' and here lies the rub of the sequence in terms of the complexity of landscape cognition. The key point, of course, is that it is not a matter of there being an edge, a divide, but many.

Within the Haddenham area the Neolithic landscape would seem to have had two main foci: the Foulmire Fen terrace with its cluster of funerary monuments and the great causewayed enclosure on the Upper Delphs. Surely linked by paths, other small clearances and campsites would have dotted the area as attested by the pitting cluster at Barleycroft Farm (Evans et al. 1999; Evans & Knight 2000). Essentially it seems a matter of pocketed enclaves amid forest and, as argued, the very raison d'être, symbolism and irregular plan of the causewayed enclosure may relate to the establishment and maintenance of a 'great' clearance. Yet, set against this pattern of pocketed forest foci is a larger pattern that is essentially riverine — the Ouse as a corridor into landscape.

As demonstrated in the loss of the skirktland terraces of the Chatteris/Ely peninsula, during the Early Neolithic there seems no sense of a major wet/dry divide, though surely there would have been backwater pools and cut-off oxbow bends with their own wet edges within these very low-lands. Nevertheless there is no evidence that the 'wet' was then problematized as a significant cultural landscape category. Although little demonstrated within the project's studies, it would have been through more extensive clearance in the later Neolithic and earlier Bronze Ages that broad zonal distinctions may have developed (i.e. beyond forest/cleared itself). In this, it is the organization of the barrow cemetery that is the most telling. Markedly linear and distributed only along the southern and eastern riverside terraces, in relationship to marine incursions across the lower fen plain north of the Ouse channel, it would seem to be then that a substantial portion of the landscape became wet. It was this divide with the southern dry lands that the barrows demarcated.

The Lower Delphs terraces were essentially 'lost' from occupation in the later second–early first millennium BC. While thereafter the upstanding crows of earlier round barrows were evidently utilized as marsh-fast 'stations', the inundated western terraces no longer saw settlement per se and certainly there is no evidence of Roman usage whatsoever in this area of the Level. It was during the Iron Age that we seem to see a marked geographic shift, with settlement strung-out along the fen-edge at the wet/dry littoral of c. 2.50 m OD. Seemingly to complement this usage (though retracting back from the 'edge', and largely south beyond the line of the Car Dyke/Old West River), the organization of the Romano-British landscape was also fen-related and variously laid-out from the high terrace skirktland of Cottenham, Willingham, Over and Earth/Somersham. This is not a matter of either/or, and these Iron Age and Roman communities surely had up-river (inter-)relations, but rather the distribution of sites within this area directly related to the wet marshland and was not essentially riverine.

In relationship to monumental definition and distributions, the Delphs' sequence can also be variously characterized in terms of its centrality and marginality within local land-use patterns. As attested by the construction and scale of the causewayed enclosure, during the Neolithic it can only be considered a central place: a locale for gathering. Caveats aside pertaining to the recovery of Bronze Age activity, if not considered marginal, it can then only have hosted low density settlement, with the Snow's Farm barrow and eastward ring-ditch as outliers of the main Ouse terrace cemeteries.

With settlement enclosures dotting its fringes (and with its crown arguably reserved for arable production), during the Iron Age the Delphs again seems to have been a distinct locale and significant settlement focus. Whereas characterized as 'outlands' (and 'liable to flood'), in Roman times the terrace can only have been considered marginal in relationship to the dense quasi-radial layout of contemporary settlement and field systems south of the Old West River.

Against a background of a changing physical (and cultural) geography, a rhythm of investiture within the terrace's settlement sequence seems apparent. When it served as some manner of 'centre' or at least a significant locale in its own right, were times of environmental colonization; during the Neolithic as part of the process of Neolithization itself (e.g. clearance), and during the Iron Age in adaptation to a wet environment. This evidently tells of the social and cognitive processes of 'coming into' land and the realization of its possibilities. This contrasts with the area's political colonization in Roman times, when it does not itself seem to have been re-invested as a new focus. Of course, the utilization of the barrow as the site for a shrine suggests a sense of (re-)invented place.
The point is that it then lay distanced and at a remove within what were clearly marginal outlands.

Settlement hierarchies, community resolution and social fabric

Unless accepting social relations as voluntary, issues of power and obligation must, of course, underlie models concerning the central vs the marginal status of the terrace through its land-use sequence. In historical times (the terrace's Roman and post-medieval usage) these relationships ultimately led out of the region to manors, villas, London and beyond (e.g. Rome).

Yet in terms of the Upper Delphs in prehistory what is the expression of, or correlation to, such relations? Leaving aside the Bronze Age (on the basis that too little of its structure was recovered), we are left with the Neolithic and Iron Age: both periods in which it has been argued that the terrace was a significant locale within its own right. Based on this, and drawing from the evidence of other sites in the region, Figure 10.3 expresses models of what would usually be considered settlement hierarchies but which also try to depict levels of community resolution (i.e. situating identity and ritual practice). In the case of the earlier Neolithic we know of no higher level of social expression than the causewayed enclosure. What lies behind or below it are short-lived campsites and lineage-based long barrows. In the Iron Age, whilst seeing more obviously permanent modes of settlement as expressed in the household compounds, below them in any tiered sequence must lie the short-lived procurement camps. However, the key point here is whether anything lies above this level — do we imagine the Iron Age as a free-peasantry or bound by extra-familial structures (e.g. tribal and/or clientage)? Was HAD V only a 'successful' familial structure or did a substratum exist below and, equally, did its inhabitants have obligations relations to off-terrace 'centres'? Within the regional record, of the latter the only known are the 'great' defended enclosures, the nearest being at Belsar's Hill, Willingham 3 km to the southeast (see Evans 1992). Unexcavated, it is not known whether it was a communal construction to be used as a refuge a time of threat such as is proposed for Arbury Camp (in Clarke 1972; see Evans & Knight 2002) or a residential seat of power perhaps analogous to the Wardy Hill Ringwork (Evans 1992; 2003a).

These questions reflect the interpretative dilemmas of their respective periods. In terms of the Neolithic, was there any more permanent basis of settlement between the campsites and the causewayed enclosure, and during the Iron Age, did anything lie 'above' the settlement site? In short, at which level were social groups respectively configured? The scheme presented in Figure 10.3 is essentially hierarchical based upon size and a greater complexity of mass-integration. It suffers from the shortcomings inherent in any such modelling and it could, for example, be argued that, situated in the uppermost tier, the causewayed enclosure has more in common with the Snow's Farm shrine than the Roman settlement at Earith: or the modern village of Haddenham also set on the uppermost level.

In terms of the situation of ritual gathering (variously annual visitations to the causewayed enclosure or the Snow's Farm shrine or even going to the church/chapel in Haddenham), of pressing concern is the character of ritual in the Iron Age. This again returns us to the issue of whether the HAD IV enclosure was a shrine: did they 'go out' for ritual or did it only occur in the context of settlement? Here the terrace's 'invisible' Bronze Age may help to inform us; barrows/ring-ditches aside, we know of no other level of mass ritual gathering during that period. On the one hand, given the character of deposition in the HAD III barrow, at least in its secondary Deverel-Rimbury associated phase, it was a space of group gathering (and earlier the construction of the mound itself has been a mass event). Yet, this must essentially have been the equivalent of rites relating to the earlier Neolithic long barrow (or, later, Roman cemeteries), not inter-community gathering. On the other hand, the frequency of human bone on later Bronze Age and Iron Age settlements could suggest that a level of ritual activity was subsumed within settlements. The layout of the Barleycroft Farm Bronze Age field system and its ring-ditches would suggest that one of the 'hill-tops within the floodplain was a place of mass gathering (Evans & Knight 2000; 2001). During the Iron Age the Upper Delphs populace must also have had a place of mortuary ritual and probably, too, the equivalent of otherwise empty 'fairground' space — a place of trading, striking marriages and performing various ritual. Evidently unenclosed, these have yet to be detected (unless this is what is reflected by the traces of contemporary activity on the crown of the HAD III barrow itself).

Figure 10.3 (opposite). Levels of community resolution. Neolithic: 1) Barleycroft Farm, Mildenhall pit cluster; 2) Foulmire Fen long barrow; 3) Delphs Causewayed enclosure; Iron Age: 4) Barrow-top procurement 'station'; 5) HAD V; 6) HAD IV (7) shrine); 7) Belsar's Hill Ringwork; Roman: 8) HAD XI stock enclosure; 9) Cut Bridge Farm complex; 10) Snow's Farm shrine II) The Camp Ground 'town' at Colne Fen, Earith (Regan & Evans 1997); post-medieval: 12) Snow's Farm; 13) Haddenham Village.
Given the nature of the terrace’s sequence, a sense of communal coherence seems apparent in its early periods of usage: the causewayed enclosure seemingly integrated dispersed lineage sets and, at least as recovered, the terrace’s Bronze Age occupation seems unlikely to have encompassed much diversity. However, the same is not true of the Iron Age, when we find diverse pottery/faunal assemblages and enclosure types. This potentially raises issues of the character of the contemporary terrace community. Was it always a collective ‘unity’ or did it include the marginal expression of more distant groups? Although, as discussed above, these differences may have chronological implications, they also hint at a complexity of social fabric. During this period the terrace would have fallen on a significant social border — the northern limits of the Aylesford-Swarling cremation rite (and earlier gold coinage) and between northeastern shell tempered ware distributions and southern sandy ware groups — which may well have resulted in an intense social dynamic (Hill et al. 1999).

Equally, it is reasonable to envisage that, at other times, the terrace variously saw the interaction of Neolithic and Mesolithic groups, and Romans and Britons (or at least Romanized communities of widely varying degree), and we must be wary of necessarily assuming homogeneous past communities.

The loss of fabric

Despite or perhaps because of its ‘newness’, the Fenland has been prone to much mythologizing and legend. These ‘Tales from the Fens’ variously emphasize a rebellious identity in which the drowned past beneath the blanket surface geography serves as alternative, an *other*, to the present. However, the historically relevant tales (evidently ‘informed’ by vacationing academics) are generally little concerned with specific places. Rather they tend to embody tableau-like vignettes of resistance in which the intercession of timely floods often serves as a hyper-metaphor of structural inversion, with worlds turned ‘upside down’ and social order inverted (see Evans 1997b for further discussion and examples).

The character of the area’s place-names reflects the extent of hiatus in the settlement sequence in Saxon/medieval times: the *Upper and Lower Delphs, Foulmire Fen, Brown’s Farm, Snow’s Farm* and so on. Variously describing their plot’s topographic situation, condition and ownership, they do not evoke time depth or association. Instead, they convey a sense of new start from a blanket landscape — a new land (‘Year Zero’). The parallels between the cultural landscape of the drained Fenland, colonialism and concepts of the nurture of ‘wastes’ elsewhere have been previously explored (Evans 1997b). Certainly it tells of landscape attitudes (and ‘newness’) that we find colonial place-names employed: locally, *New England Farm; near Sutton, America* and, at Wilburton, *Australia Farm*.

We have come to view the countryside through a perspective of continuity, the comfort of rural custom (as the antithesis of the urban). At first glance James’s study of the succession of the terrace’s farms over the last two centuries evokes a sense of appropriate rhythm through the reassurance of a generational settlement fabric. Of this legacy of names and places only Hermitage and Flat Bridge Farm remain today, with the rest having gone into vast expanses of fields and industrial farming practice. A feeling of loss underlies this; of ‘nameable’ familial history having succumbed to economic trends and, effectively, entered the archaeological record. Yet is this just sentimentality and is it, for example, really any different to what occurred on the Delphs during the later Iron Age? ‘They’ have also gone, and the settlement densities and overall time span of the two periods (the post-medieval and later Iron Age) are, after all, roughly comparable. In the renaming of these more recent farms, the frequent changes in ownership and tenancy, and the rise, amalgamation and decline of plots there is a strong sense of settlement dynamic and, too, fragility (see P. Hill 1992 concerning the contingent nature of apparently ‘traditional’ Fenland communities). Without arguing for either an environmental or economic determinism (and, if anything, through the intense exploitation of wetland resources the economic basis of the HAD V enclosure would have been more broadly based and probably more stable), parallels can be envisaged in this dynamic and the terrace’s Iron Age usage. Variously, the rapid establishment and abandonment of enclosures must equally reflect the entrepreneurialism of some individuals and the potential economic ‘pull’ of successful families (i.e. breeding patterns), as opposed to the calamity of bad years (e.g. flooding) or childless marriages.

Seeing such parallels between this century’s small holdings and the terrace’s Iron Age occupation goes far to humanize its later prehistory, and provides a settlement dynamic beyond the mechanical determinants of population pressure or economic optimization. Nevertheless, the recent passing of the terrace’s smallholdings evokes a genuine sense of loss — the passing of local knowledges, ‘placed’ names and fabric. Yet, against this apparent trauma in the countryside, new identities, social relationships and landscapes are today being forged (e.g. commuter communities), rituals re-invented (e.g. the revival
Figure 10.4. The rider escapes. Nineteenth-century Danish engraving showing the temptation of a rider by trolls gathered beneath a barrow/megalith elevated on pillars of light (Holbek & Pio 1967, 37).

of beating of parish bounds) and the relationship of culture and nature redefined within the landscape (e.g. the establishment of wildlife reserves).

The rider escapes

It is at this point in the publication of major campaigns of investigation that disclaimers are introduced, excusing the shortcomings of their programme's results and methodologies. Ours are glaringly obvious (e.g. too little site-specific environmental study and chemical testing) and, as is invariably the case, much comes down to contingency (i.e. inadequate funding and time). Yet to some degree this is also inevitable given the demands of large-scale projects, whose publication timetables always out-strip whatever were the project's innovations in its time. Interpretation can be modified and developed after the fact, but its demonstration remains constrained by the data at hand and the methodologies of the day.

Discursive and open-ended like landscape itself, effectively this is a study without conclusion. Key themes may be highlighted, such as the dynamic of marginal lands as a setting for environmental and social incursion, the cultural evaluation of landscape, the hermeneutic of study, the necessity and inadequacy of naming, and the failure of 'complete' recovery on even wetland sites, but it is telling of the chimera of 'totalities' that, like the rider in Figure 10.4, something will inevitably escape. Social relations will always lead out beyond any research framework; there will always something more, something missing ...

Landscape and study — this choice of metaphors is not accidental. The confrontation with landscape knowledge, getting to know land in the specificity of sequence and the detail of place, is always one of humility leading to a suspicion of 'total' systems. The point of the study is how tension rather than balance is maintained between the specific, the regional and 'the grand'; the path, as it were, between the immediate continuities of a strict localism and 'world-scale' processes. Like the terrace's missing smallholders, all those who peopled the Delphs sequence had lives which led them to interact at a number of levels wherein they performed and recreated their identities. Their study is a worthy act of historical reclamation.
References

Bedwin, O., 1980. Excavations at Chantreyton Ring,
References

References

References

Evans, C. 2001. Metalwork and ‘cold claylands’: pre-Iron Age occupation on the Isle of Ely. in Through Wet and
References

References

References

Rickerson, O., 1937. Les excavaciones en Uaxactun. (Anales de la Sociedad de Geografía e Historia 9.)

References

Simonds, J.B., 1854. The Age of the Ox, Sheep and Pig. London: Orr & Co.

Taverner, F., 1653. A vindication of the [urie ... in the Upper-Bench ... Against the Inhabitants of Haddenham ... London: J. M & J. A.

References

White, L., 1997. Flat Bridge Farm, Haddenham, Cambridgeshire an Archaeological Evaluation. (Cambridge Archaeological Unit Report 231.)

Williams, R.J., 1993. Pennyland and Harrigans. (Buckinghamshire Archaeological Society Monograph 4.)

