Marshland communities and cultural landscapes from the Bronze Age to present day

By Christopher Evans & Ian Hodder
Marshland communities and cultural landscapes

By Christopher Evans & Ian Hodder

With contributions from
Mark Beech, Pamela Braddock, Richard Darrah, Megan Dennis, Jon Etté, Charles French, Andrew Herne, Lorrain Higbee, J.D. Hill, Caroline Humphrey, Gillian Hunt, Nicholas James, Glynis Jones, Paul Lane, Steven Laurie, Frances Lee, Anthony Legge, Gavin Lucas, Donald Mackreth, Peter Marshall, Andrew Mawson, Paul Middleton, Robert Middleton, Peter Murphy, Sylvia Peglar, Judith Pettigrew, Joshua Pollard, Francis Pryor, Richard Reece, Peter Reeves, Dale Serjeantson, Paul Shand, Jane Sidell, Janet Simms, Pamela Smith, Marie Louise Stig Sørensen, Christopher Stevens, Yarjung Kromchain Tamu, Maisie Taylor, Lee White, David Williams, Gillian Yates & Ezra Zubrow

Principal illustrations by
Crane Begg, Marc Berger & Andrew Hall

The Haddenham Project Volume 2

Published with the aid of a grant from

ENGLISH HERITAGE
CONTENTS

Vol. 2: Marshland communities and cultural landscapes

Figures viii
Tables xiii
Preface & Acknowledgements xvii
Summaries xx

Chapter 1 Introduction: Themes and Knowledges 1
 Sourcing and modelling wetlands 3
 Structuring the text 5
 Archival context and other sources 8
 Inset: John I'anson Bromwich: explorer of the gloomy places (P. Smith) 13
 Radiocarbon determinations (P. Marshall) 15

Chapter 2 Barrow Investigations 17
 The Snow's Farm barrow (HAD III) 18
 The buried soils (C.A.I. French) 21
 The barrow sequence 24
 Pre-barrow activity 25
 The barrow 26
 The cremation pyre 27
 Human bone (F. Lee) 28
 Secondary activities 30
 Cremated human remains (F. Lee) 33
 The pottery (J. Pollard) 35
 Worked flint (H.R. Middleton) 36
 Animal bone 36
 Metalwork 36
 Discussion 37
 Pre-barrow settlement 37
 The barrow sequence 37
 The Hermitage Farm barrow 38
 The terrace setting 38
 The barrow sequence 39
 The primary mound 40
 The long mound 43
 The ovoid barrow 43
 Urn group 43
 Pottery (J. Pollard) 46
 Cremated bone (F. Lee) 48
 The round barrow 50
 Later usage 51
 Pottery (J. Pollard) 52
 Worked flint (H.R. Middleton) 54
 Animal bone 54
 Discussion 54
 Sequence and chronology 54
 Inset: Active monuments: the Mergen oboos (C. Evans & C. Humphrey) 55
 Small monument architecture 57
 Wetland stations: later usage 58

Chapter 3 Bronze Age Usage: Landscape Sketches and Environmental Change 61
 HAD VII: a beaker pit 61
 Pottery (J. Pollard) 62
HAD VIII: the rectangular enclosure (with J. Erré) 65
The enclosure 65
Lynchet systems 68
Discussion 70
Losing land: sequencing the wet 71

Chapter 4 HAD IV: an Iron Age Shrine? 77
Open settlement 77
The enclosure 80
Magnetic-susceptibility survey (G. Yates) 82
Faunal remains (L. Higbee) 83
Late Bronze Age and Iron Age pottery (J.D. Hill) 87
Fired clay (G. Lucas) 92
Discussion 93

Chapter 5 The HAD V Enclosure: Constructing the Domestic 97
Coming to terms with strata: methodology 98
Natural sub-soils and topography 99
Soil micromorphology (C.A.I. French) 100
Interpretation 101
Phasing outline 105
Phosphates 106
Period 1 107
Period 2.1 112
Period 2.2 122
Excavation themes and analyses 127
The lessons of occupation strata 127
Ardmark systems 129
Pits 133
Building details 137
Building form 137
House resourcing (R. Darrah) 142
Building artefact densities 142
Floors and interior space 144
Depositional histories and middening 146
Inset: Household space and artefact inventories (P. Lane) 148–9
Iron Age pottery (J.D. Hill & P. Braddock) 152
Methodology 154
Chronology 156
Fabric 157
Vessel form and size 158
Surface treatment and ornamentation 161
Vessel size and function 169
Ceramic petrology (D.F. Williams) 175
Production and exchange 177
Deposition and spatial analysis 178
Comparison with other Haddenham Iron Age assemblages 188
Style and identity: scored ware communities in the southwest fens 190
Wooden artefacts (M. Taylor) 194
Material culture: sets and assemblages 195
Abandonment and representation 196
'Organics' and decoration: negative evidence 196
Fired clay (J. Etë & G. Lucas) 197
Inset: Gender: settlement interpretation and representation (M.L.S. Sorensen) 198–9
Worked and unworked stone (G. Lucas, P. Reeves & S. Laurie) 201
Slags (M. Dennis) 205
Small finds 206
Brooch (D. Mackreth) 206
Ironwork 209
Contents

- **Copper alloy objects** 209
- **Bone and antler** 210
- **Fired clay** 211
- **Glass** 211
- **Shale/jet** 211

Small finds distributions

Animal remains (D. Serjeantson)
- Bone modification and site-formation processes 213
- Mammals 214
- Domestic mammals 217
- Wild mammals 218
- Birds 224
 - Eggshell (J. Sidell) 227
- Fish 233
- Non-anthropogenic vertebrates 235
- Large molluscs 239
- Distribution of bone in the settlement 239
- Special animal deposits 242
- Seasonality in animal resources 243
- Discussion 243

Ritual structures
246

Inset: Totems, house signs and ‘booking’ common 247

Cereal processing, household space and crop husbandry (G. Jones)
248
- Species represented 248
- Traditional cereal processing 251
- The plant samples 253
- Cereal processing and the use of space 254
- Cereal cultivation 254

Waterlogged plant remains (G. Hunt)
255
- Discussion 256

Pollen analysis (J. Simms)
260
- Discussion 261

Overview discussion: cereals — the evidence for local cultivation (G. Jones) 263

The wood assemblage (M. Taylor) 263

Overview discussion: local environment and correlation with Willingham Mere (P. Murphy) 266

Discussion
267
- Phasing and chronology (with P. Marshall) 267
- Household histories and dynamics 269
- Spatial structures 271
- Enclosure and defence: the draw of labour 274
- Economy and trade 276
- Representation, closure and status 277

Chapter 6 The Iron Age Landscape

HAD VI (with P. Shand)
- Iron Age pottery (J.D. Hill & P. Braddock) 281
- Animal remains (D. Serjeantson) 288
- Other finds 291
- Discussion 292

HAD VII & X
- Environmental remains (S. Peglar) 294
- Iron Age pottery (J.D. Hill) 297
- Animal bone (D. Serjeantson) 299
- Discussion 299

HAD IX
- Iron Age pottery (J.D. Hill) 299
- Animal bone (D. Serjeantson) 304
- Discussion 305

1981 excavations
307

Flat Bridge Farm (with L. White) 308
Contents

Iron Age and other features 308
Finds 309
Discussion 310

Overview discussion: the terrace pottery (J.D. Hill) 310

Economic and social reconstruction 311
The Iron Age demography (E. Zubrow) 311
Peopling fields: the arable need (C. Stevens) 313
Pasture requirements (F. Pyor) 314
Below thresholds: overviewing and ‘knowing’ populations 315

Discussion 315
Local knowledge 315
Enclosure and tenure 319
Landscape: arrivals and strategies 321
Resolving communities: a social mosaic 324

Chapter 7 The Shrine Complex: Situating Ritual (HAD III) 327

The shrine sequence 327
Bromwich’s records 328
Excavation policy 330
Magnetic-susceptibility survey (G. Yates) 330
Ambiguities: Iron Age usage 331
The octagonal shrine (Phase 1) 333
The main enclosure (Phase 2) 340
The post settings (Phase 3) 346

Inset: The Byre of Mayual: a Dinka shrine in the southern Sudan (A. Mawson) 349

Building materials and reconstruction 350
Discussion 352

Artefact distributions and depositional context 352
Bone 353
Pottery (with G. Lucas) 353
Metalwork and small finds 357
Depositional context 358

Small finds 358
Bromwich’s finds 358
The 1983 excavations: coins (R. Reece) 360
The brooches (D. Mackreth) 363
Other finds (G. Lucas) 365
Fixtures and fittings 366
Other 366
Discussion 367

Animal remains: evidence of animal sacrifice (M. Beech) 369
Results 372
Discussion 385
Conclusion 394

Inset: Sheep sacrifice among the Tamu-mai of Nepal (J. Pettigrew & Yarkung K. Tamu) 395

A note concerning plant remains 396

The Roman pottery (G. Lucas) 396
The fabric type series 396
Pottery forms 398
Dating 402
Sources 403
Vessel types 404
Contextual and spatial analysis 406
Special deposits 406
Conclusion 407

Discussion: transformation and sacrifice 407
Phasing and dating evidence 407
Architectural and depositional parallels 411
Architectural and votive expression (with G. Lucas) 413
Ritual performance: the place of ritual
Chapter 8 The Roman Landscape 419
 The Delphs sites 419
 HAD II 419
 Dating and interpretation 424
 HADVXI 425
 ‘Outlands’: the Delphs occupation 427
 The Willingham fen-edge: Cut Bridge Farm, Willingham (with A. Herne) 429
 Queensholme excavations (G. Lucas & P. Middleton) 431
 Animal bone (M. Beech) 435
 Iron Age and Iron Age ‘tradition’ pottery (J.D. Hill) 440
 Romano-British pottery (G. Lucas) 442
 Other finds 443
 Discussion 445
 Romano-British pottery in the Bromwich Collection (G. Lucas) 446
 Catastrophe and ‘visibility’ in the Roman fenlands 449
 The Willingham ‘edge’: power and landscape 450

Chapter 9 The Landscape of ‘Improvement’: Post-medieval Times 453
 Ground conditions, 1550–1950 (N. James) 453
 The Haddenham Level 455
 Inset: The Level and History 460–461
 Upper Delphs Settlement 463
 Overview discussion: New Englands? (C. Evans) 465

Chapter 10 Reclamations: Communities in the Level 467
 Domestic frameworks: bounding land 467
 Ritual structures 468
 Earthwork continuities: the place of ritual 470
 Environmental and landscape sequences 472
 Settlement hierarchies, community resolution and social fabric 475
 The loss of fabric 476
 The rider escapes 477

References 479

Vol. 1: A woodland archaeology (printed as a separate volume)

Chapter 1 Introduction: Working Land
Chapter 2 The Foulmire Fen Terrace
Chapter 3 The Long Barrow: Transforming Wood (and Bodies)
Chapter 4 The Delphs Terraces
Chapter 5 The Cau sewaye d Enclosur e: a Great Clearance
Chapter 6 Concluding Discussion: Constructing Identities (and Landscapes)

References
The Assembly of Context

Preface & Acknowledgements

Extending from 1981-87, the project's fieldwork spans the later phases of the Fenland Survey project. Originally occurring as a University of Cambridge training excavation supported by English Heritage, between 1985 and 1987 it was funded by the Manpower Services Commission (MSC), with the excavation of the Foulmire Fen long barrow being almost exclusively sponsored by English Heritage. In this capacity the support of J. Coles, G. Wainwright and P. Walker is gratefully acknowledged; H. Evans, then of Cambs. County Council, organized and provided the MSC liaison. During the course of the fieldwork, variously the support of J. Coles, G. Wainwright and P. Walker must be gratefully acknowledged, as also should be the participation of G. Owen (photography) and C.A. Shell (surveying and geophysics) of the Dept. of Archaeology, University of Cambridge.

Concerning the production of these volumes, Evans produced the first draft of this volume, which was then amended by Hodder; in the case of the first, this process was reversed. Yet there is no intention here of trying pretend that they are 'seamless' or 'interchangeable'. Each reflects the diverse interpretative interests of its prime author, viz. the interrelationship of theory/practice and long-term process/events or history. Books – like projects – come ‘into being’ and eventually cannot be otherwise, but hopefully these differences of approach only contribute a sense of breadth and scope to the series.

The ultimate stimulus to finally push these volumes through to completion owes much to T. Williams and P. Walker at English Heritage; with their production monitored by K. Buxton — we are sincerely grateful for their patience and support. The delay in their production can only be regretted. Their lengthy gestation has, nevertheless, proven advantageous in terms of the provision of much-needed regional site context through excavations by the Cambridge Archaeological Unit, and we are grateful for information provided by, and discussion with, many colleagues at the Unit, particularly K. Gdaniec, D. Gibson and R. Regan. In the final production of these volumes the graphic skills and computing support of C. Begg, M. Berger and A. Hall has been invaluable. The text has been read by Prof. R. Bradley, C. Cressford and N. Sharples, and we are most grateful for their comments. Beyond this, now long-term discussion and ‘mulling over of things’ with M. Edmonds, J.D. Hill, M. Knight, I. Kinnes and J. Pollard must, with pleasure, be acknowledged. Certainly to be counted amongst the latter, Gavin Lucas’s contribution to this volume must be singled out. It has been inspiring to work with him, and his insights, expertise and analytical skills underpin much of the text.
Apart from the named contributing specialists (many of whom produced on a gratis basis), we would like to thank S. Needham and I. Stead for their comments upon the project’s metalwork finds; A. Challands for his identification of the Roman coins (not including the shrine’s); R. Palmer and R. Bewley for matters aerial photographic; and acknowledge H. Lewis’ insights concerning prehistoric ploughing regimes. The late M. de Neergaard kindly commented upon the HAD II leather. D. Haddon-Reece of the Ancient Monuments Laboratory organized and oversaw the project’s radiocarbon regimes. Subsequently, A. Bayliss arranged for additional radiocarbon determinations, and we are grateful for her and P. Marshall’s comments upon the project’s dating series, and the latter’s contribution to this report.

During the course of the project’s fieldwork, D. Banham sorted and made preliminary studies of the HAD V plant remains and F. Lee analyzed the Roman pottery fabrics and vessel re-flits from the Snow’s Farm shrine. C.D. De Roche, J. Etté, J. Finney, R. Rippendale and B. Tilley variously used project data for dissertation topics; Finney’s involved the analysis of the clay pit linings from the HAD V settlement, De Roche examined its loomweights and, supervised by M. Taylor, Tilley initially recorded its wood assemblage. Etté undertook a major study of surface artefact breakage sizes from that site and this involved a considerable fieldwork component, co-ordinating the execution of the sieved transect across the compound’s interior. Rippendale was able to draw upon Etté’s researches for comparative purposes when undertaking his study of pottery fragmentation from the shrine site. Their work has all been variously incorporated into relevant portions of the text that follows; we gratefully acknowledge the significance of their contributions.

Of the specialists contributing to this volume, Charles French would like to thank R.I. Macphail and the Department of Human Environment, Institute of Archaeology, London. Similarly, Glynnis Jones would like to thank H. Smith, who did the initial scanning and detailed sorting of most of the flots, and D. Banham, who sorted and made preliminary identifications for some of the samples. She is also grateful to P. Halstead for reading and commenting on an earlier draft of this report. Megan Dennis would like to thank D. Stanley for his advice concerning the HAD V slags.

Mark Beech’s initial analysis of the animal bones was carried out during 1987 as part of a dissertation, submitted in partial fulfilment for a Master’s degree in Environmental Archaeology and Palaeoeconomy in the Department of Archaeology and Prehistory at the University of Sheffield. Both P. Halstead and G. Jones provided advice and encouragement at that time; Y. Hamilakis kindly provided assistance with the initial sorting and recording of some of the bones. Funding in 1987 was provided by a Science and Engineering Research Council (SERC) Quota Award; the text was revised in the spring of 1999. Mark is also grateful to S. Sutherland, of the Cresswell Crags Visitor Centre, Notts., for her identification of the bird bone both from the shrine and also the Queensholme assemblage; for the latter report the assistance of M. Levine and P. Halstead is also acknowledged.

Janet Simms is grateful to A. Alderton for initial encouragement and practical help with sampling, and C. Turner provided advice on methodology throughout. Identification of the pollen and spores would have been impossible without the willing help of S. Peglar and others in the Sub-Department of Quaternary Research; R. Houssley helped in the finding of the relevant archaeological reports.

Dale Sjerpfoles wishes to stress that her account of the Haddenham assemblages has many authors. The greatest contribution was made by the late M.A.L. Bracegirdle, who recorded a large proportion of the assemblage, and made a study of the beaver remains. The project owes much to his work. Others who made a contribution to the recording were J. Butler, P. Nicolaysen, V. Sellins, G. Shearer, H. Paterson, V. Smithson and T. Waldron. A. Cohen and J. Archer did much preliminary work on the bird bones. P. Murphy and S. Payne gave useful advice on freshwater mussels. She would, moreover, like to thank T. Legge for use of the animal bone laboratory at Birkbeck College, as well as for many good ideas. She also acknowledges gratefully the Natural History Museum Mammal, Bird and Fish Sections respectively for providing for the opportunity to confirm the identification of the beavers, birds and fish.

Andrew Herne thanks R. Jeffreys (Roman pottery) and the late M.A.L. Bracegirdle (animal bone) for their identification of the Cut Bridge Farm finds.

Pamela Smith would like to thank the Bromwich family for their co-operation in researching her biographical sketch; J. Alexander, M. Blackburn, R. Britton-Strong, M. Cra’ster, J. Cribb, H. Davidson, A. Duke, P. Grierson, S. Hallam, B. Hartley, J. Jones, V. Lane, P. Laslett, T. Nield, G. Pollard, P. Salway, G. Smith, the Cambridge English Faculty, and M. Underwood were also generous with their help.

Parts of Nick James’ researches reported here were generously supported by a grant from the Scouloudi Foundation in association with the University of London, Institute of Historical Research. C. Bester described conditions during the 1930s and
'40s; and J. Mason advised on soil management in the
1940s. He is also indebted to D. Hall for advice on the
land forms, to P. Filby, M. Petty and A.P.M. Wright for
advice on sources, and to J. & S. Finney for help in the
field. For help with documents and documentation,
thanks are also due to the staff of the Cambridgeshire
Record Office, the Cambridgeshire Collection
(Cambridge Central Library), the Cambridge
University map collection, the Public Record Office,
and the British Library Manuscripts Department, and
to the Chairman and Clerk of the Haddenham Level
Commission. He is grateful to L. & M. Delanoy and R.
Papworth for reviewing an earlier draft of this paper;
and for S. Oosthuizen’s support.

Finally, in terms of dedication — this is the point
at which we should thank family, kin and loved ones
(respectively, Evans: Marie Louise Stig Sørensen,
Megan and Kim Michael; Hodder: Christine Hastorf,
Chris, Greg, Kyle and Nicky). But spanning decades as
the project does, something that has involved us for so
long seems to evade the personal and almost falls into
a sense of disciplinary time. Therefore, on the verge of
their retirement (whatever that specifically implies in
their cases), for support, friendship and stimulation
in the long run this accolade is bestowed on David
Hall and Francis Pryor, and also Michael Church, the
Hermitage Farm manager who for so long put up with
so much from us.
Summary

This is the second volume outlining the results of the University of Cambridge's seven-year-long campaign of research excavations in the marshland environs of Haddenham, Cambridgeshire along the lower fenland reaches of the River Great Ouse. The key concern is with the long-term construction of the cultural landscape, regional environmental adaptation, and the changing interrelationship and constitution of ritual/settlement over time. Matters of methodology and the archaeological process are highlighted throughout, including sampling strategies, resource and population modelling, the hermeneutics of study and the nature of sequence. Equally, amongst their main themes are community resolution, marginalization and representation, and, in order to provide broader perspectives, both volumes are punctuated by inset 'analogical commentaries' drawn from diverse local and international sources.

Having reported and discussed the area's Neolithic monuments and settlements within the first volume, here the concern is its subsequent land-use history. Central to it is the Snow's Farm barrow complex excavated in 1983. Having been superficially investigated by Bromwich in the 1950s, this saw a Romano-British shrine sited upon a Bronze Age round barrow (itself sealing traces of later Neolithic Grooved Ware occupation). Also having a later Iron Age enclosure located immediately beside it, the Snow's Farm sequence accordingly provides the volume's pivot. Therefore, following the description of its barrow proper (with a primary in situ cremation pyre and ten urned and unurned cremations), the sequence of the neighbouring Hermitage Farm barrow is related. The latter proved to be a complex 'small monument', and from it was recovered an important three-vessel Collared Urn cremation. The area's later second millennium bc landscape 'fragments' — including an enclosure and lynchet system (and also a significant Beaker pit assemblage) — are then outlined and, relating to the onset of 'wet' conditions, the evidence of its later prehistoric environmental sequence reviewed.

Thereafter attention turns to the Iron Age landscape. In the course of the project's fieldwork, four Middle/later Iron Age enclosures were investigated. By far the most thorough and intense of these occurred on the HAD V riverside compound, whose surface deposits (floors, banks, etc.) were superbly preserved through subsequent flooding, and its waterlogged deep-cut features produced important wood and environmental remains. The site's finds assemblage proved prolific, and its animal bone included a remarkably high percentage of wild species (e.g. beaver and various 'big' birds). Arguably relating to trade/exchange strategies and seasonal wetland resource exploitation (the marsh-proud crowns of earlier barrows being utilized to this purpose), its evidence and that of the other enclosures of the period permits uniquely detailed social and economic reconstruction concerning the establishment of wetland-specific communities.

The area's Romano-British utilization hinges upon the Snow's Farm shrine complex. This involved the enclosure of the upstanding barrow mound, and its primary stone-footed octagonal cella was, in later Roman times, succeeded by a series of timber post-ranges focusing on a post-built shrine structure upon its crown. Although the site's 'conventional' finds assemblages (e.g. metalwork and ceramics) were not especially abundant, its animal remains were outstanding. They included a series of votive carcases and also head-and-hooves deposits (some having coins set in the mouths of sheep) and a wide array of wetland bird species. When added to the evidence of the site's sherd/vessel distributional analyses, this allows for nuanced insights into the operations of rural shrines and, particularly, the nature of sacrifice and ritual transformation.

A sense of wider perspective is provided by a review of Bromwich's earlier findings from the complex, especially a baton handle which matches those recovered from the renowned Willingham Fen hoard. Therefore, following comparison with other shrine sites and the reporting of the Roman agricultural enclosures (and a droweway system) also excavated during the main project, a review is made of the extensive Roman settlement and fieldsystems south along the Willingham/Over fen-edge. Not only does this include the results of subsidiary W.E.A excavations at Cut Bridge Farm and Queensholme, but also re-analysis of Bromwich's extensive Penland in Roman Times fieldwalking collections.

The area's post-medieval enclosure and drainage is then outlined and related to issues of (re-)colonization, the loss of landscape fabric and the broader impact of history upon these 'marginal' lands.
The philosophical remarks in the book are, as it were, a number of sketches of landscapes which were made in the course of these long and involved journeyings. The same or almost the same points were always being approached afresh from different directions, and new sketches made. Very many of these were badly drawn or uncharacteristic, marked by all the defects of a weak draughtsman. And when they were rejected a number of tolerable ones were left, which now had to be arranged and sometimes cut down so that if you looked at them you could get a picture of the landscape. Thus this book is really only an album. (L. Wittgenstein, preface to the Investigations 1958; emphasis added.) Wittgenstein has, in effect, been a 'neighbour' during the production of these volumes; he is buried in the Ascension Parish Burial Ground that lies only some 200 m north of the Cambridge Archaeological Unit's offices alongside the University Farm fields on the west side of town.
Chapter 1
Introduction: Themes and Knowledges

The concern of this volume is with later prehistoric (post-Neolithic) and more recent landscape history: long-term interrelations within, and cultural imprinting upon, land, when the past would have been readily apparent in earthwork form. Reflecting the build-up of time, often to act in the landscape was to transgress or eradicate earlier sites. Mapping associations between sites (and even its potential corollary in the denial of interrelationship) therefore feature. While a repository of myth and association invested with stories, landscapes are not themselves stories or texts. They do not embody only one narrative, but the overlap of many — many lives and interpretations.

A research area is always arbitrary and ultimately inadequate, and cultural traces will always lead outwards beyond its borders: up the Ouse, to the Midlands, Wessex, Yorkshire, the continent or wherever. The risk is to see the research area as 'the world' and bind up interpretation solely in terms of what was found. Though satisfactorily neat and closed in the manner of all stories, the Delphs fen-edge terraces (with which we are here primarily concerned) can be walked from end to end in less than half an hour and people must have left this 'world' regularly. Similarly, cultures are not closed (Boon 1982). Their 'fixing' is often oppositional (i.e. in relation to 'others') and their membership fluid. Like landscape, they are another totality that cannot be adequately pinned down. These issues are particularly relevant when dealing with fenland-scape, where much quasi-historical myth-making stands between us and its pre-historical past (i.e. that which is sealed beneath peat and silt). Archaeology must be wary of indulging in such advocacy of long-term regional character, which in the Fenland embraces archaism, isolation, an 'out-landishness' and notions of egalitarianism. In short, 'backwatermess'.

Whereas the first volume of this series is essentially concerned with the Neolithic colonization of land, from the later second millennium we must be concerned with the rhythms of retreat, abandonment and return. In effect, the establishment of the fen-edge as a marginal environment. The emergence of marshland communities — when the 'wet' came into being and was adapted to — is, therefore, a central theme — which is not, of course, necessarily the same thing. Against this changing environmental framework, it must, however, be borne in mind that these are cultural responses to 'the wet'. They relate to knowledge and the appreciation of risk and resources, but would not have been determined by any sense of necessary economic optimism. Just as the research frame is arbitrary, so too does the construction of a region need to be addressed. In the Fenland its implications are great and has led to a presumption of a constant 'wet identity'. But, at least in the instance of the Delphs environs, this cannot be considered as a given. The onset of the wet is the object of study; at what time communities identified with marsh-life more than with any 'parent' or at least upland/upriver settlements. Even in historical times (at least post-1600 AD), if they ever existed, the lives of 'wily semi-aquatic' Fenlanders (as portrayed) were as much determined from the boardroom of the Bedford Level corporation as their immediate neighbours.

Throughout this text various temporalities will also be explored and time 'problematised'. On the one hand, this involves the longue durée: rhythms of re-investiture of monument complexes, place-value association (Evans 1985) and patterns of long-term land-use sequences in general. Yet, equally, there is the sense of the 'moment' allowed by detailed excavation, and the two main sites described here can be considered as 'material ethnographies'. Each reflects upon time in different ways. The extraordinary quality of the faunal assemblage and environmental data from the main Iron Age settlement (HAD V) is such that it allows us, in effect, to construct a calendar of their annual round, detailing their year and procurement sequences. The other well-preserved site, the Snow's Farm complex, included a series of Romano-British shrines with sequences of votive animal deposits. Shrines relate to the control and ritualization of time (e.g. Bloch 1977; Turner 1974), regularizing the annual cycle, and here
Figure 1.1. Location map. Note that in main figure dark shaded swathes indicate areas of subsequent Cambridge Archaeological Unit investigations within quarries adjacent to the Haddenham research area.
the idea of the site as calendar will be explored. Finally in this vein, the concept of the 'ethnographic moment' of sites will be employed. Generally relating to ritual, by this is implied the sense of the 'world-centring' rite in which social/cultural matrices of the time are realized and their world brought into being.

This volume ends on loss. That is forgotten histories and the inundation of the landscape in post-Roman times and its subsequent post-medieval reclamation. Reclaiming land/building history — a new colonization which, oddly enough, in its concerns (and contentions) returns us full circle to its original post-glacial imprint and a sense of new land. Directly relevant to the concept of cultural landscape, these themes have already been rehearsed in studies generated by the Haddenham material (Evans 1985; 1997a,b). Of course, given these concerns, the role of the state and its impact upon local communities looms large. The question whether the Roman fens were managed as an imperial estate and the depth of official penetration has resonance in its company-based drainage and arbitrary development in post-medieval times, which precipitated common right disputes.

Sourcing and modelling wetlands

In an earlier study the area's wetland use during the Iron Age was contrasted with the hydraulic hypotheses, viz. the possibilities of organized environmental response (Evans 1997a). Wetlands and deserts, whilst their association is perhaps not obvious, share a cultural response to extreme environments ('wastes'). Accordingly, the interrelationship of landscape and knowledge will also be explored throughout this volume.

By virtue of their flatness drained wetlands present, in effect, the approximation of an 'ideal' ground surface and certainly, buoyed by the ethos of the improvement of wastes, since post-medieval times the fens have attracted grand 'planner's board' schemes. Amongst the more extraordinary are C. Dymock's proposed ideal farms of the seventeenth century (Fig. 1.2:1; Grove 1981; Evans 1997b). Wonderfully concentric, they have echoes in Tilley's attempts to apply catchment analysis to the region's sites (Fig. 1.2:2; Tilley 1979). Of course, the opposite pole in Fenland studies is that of depth — a buried world — and is typified by Clark's renowned sequence at Peacock's Farm (Fig. 1.2:3; Clark et al. 1935; see also Smith 1997). Yet, in contrast to attitudes of nineteenth-century researchers (e.g. Miller & Sketchley 1878) and eighteenth-century antiquarians (e.g. Dugdale) who took the evidence of deeply submerged forests in the peats to argue that the fen was once a 'dry and fruitful country' and for whom the key issue was the date of its inundation, from Godwin's research the early date of the deposition of Fen Clay at Peacock's Farm led to a presumption that the fens were constantly wet throughout most of later prehistory. This understanding was only really re-addressed and the complexity of the region's environmental sequence appreciated through Waller's studies in the 1980s (1994).

Arguably the most influential wetland model remains Clarke's study of the setting of the Glastonbury Lake village on the edge of the Somerset Levels (1972). This was underpinned by precepts of 1960s geographic locational determinism and the palaeo-economy of the Higgs school (itself strongly influenced by Grahame Clark; Tilley's uncharacteristic application of site-catchment analysis to Fenland sites in his undergraduate dissertation published in 1979 was the direct result of his being a student of David Clarke's). Although duly criticized for the imposition of theoretical absolutes on patchy data (Coles & Minnitt 1995), Clarke presented a uniquely detailed picture of later prehistoric social organization and land use. The impact of this study cannot be over-estimated and it will be referred to on more than one occasion in this volume. Modelling the Iron Age community's 10-km resource territory, Clarke situated Glastonbury within a local sheep-based transhumant cycle with flocks being driven up on to the Mendip slopes. In the Glastonbury paper, Arborby Camp, an Iron Age ringwork on the clay plain north of Cambridge, was cited as offering a parallel to the Mendip hillforts and (referring to John Alexander's work) related to an inter-fenland pastoral transhumance model. Clarke's study was thereafter drawn upon in Pryor's Fengate researches and generally the impact of transhumant modelling in Fenland archaeology has been considerable. Having indirect sympathies with the all-embracing pastoralism of an earlier generation of researchers (e.g. 'the Age of Abraham': Lethbridge 1950), it has subsequently proven something of a 'catch-all' and been used to explain almost all major site/monument types in the region, from barrows to Neolithic causewayed enclosures, Bronze Age field systems to Iron Age forts. As a result, 'nation-wide' and even near pan-European phenomena have, in the Fenland, been explained through environmental particularism (see Evans 1987 for overview).

There have been two main, if very different, sources for the application of transhumant modelling. The first, by direct historical analogy, is the inter-commoning of stock on distant pasture in medieval times. Involving distances of 1-15 miles (c. 5 average), this entailed the driving out of and camping with stock onto the low summer pastures from fen-edge/-hinter-
Figure 1.2. Wetland models: the flat and the deep. 1) Cressy Dymock’s model of a ‘considerable farm’ of 100–300 acres (mss. Bodleian Library: Grove 1981, fig. 2); 2) Tilley’s 10-km site-catchment ring for Shippea Hill (1979, fig. 25); 3) Peacock’s Farm, Shippea Hill 1935 (after Hall & Coles 1994, fig. 4); 4) Fenland intercommoning (Darby 1940, 13); 5) The Asendelver Polder land-use model (Brandt et al. 1987, fig. 16.5).
land villages (Fig. 1.2; Darby 1940; Neilson 1920). The other source has been Evans-Pritchard’s renowned study of the Nuer (1940), whose landscape ‘cycling is conversely driven by a dry season dynamic. They must leave their main villages through a lack of water and break into small herding groups camping near sources of permanent supply. Annually forced to leave ‘home’, as opposed to exploiting the seasonal availability of a resource (wetland pasture only available in the summer), this is a very different situation than in the undrained fens; the one environmentally determined (the Nuer), the other opportunistic (the fens).

Providing a dynamic which accounts for the emptiness or blank space between disparate sites, the appeal of transhumance as an explanatory mechanism is that it allows for the connection of far-flung distribution dots. Arguably the scale of migrations envisaged has related to the distance of things/sites that require interpretative linkage and, as such, its application directly reflects upon the intensity of fieldwork and regional period settlement densities.

In many respects the Delphs approximates a concave landscape model of wetland exploitation/location as described by Coles for the Somerset Levels (1978). This emphasizes the superabundance of wetland niches with settlement situated on lower slopes between arable plots and pasture, particularly the fertility of the seasonal ‘hangings’: the marsh-side meadows that drew summertime intercommoning of animals. However, the essential problem with many of these attempts at modelling is that they are essentially site-centred and static. Contrasting strikingly with, until of late, prevailing attitudes towards marshlands as ‘waste’, they picture these locations as more or less ‘ideal’ (e.g. Coles & Minnitt 1995: 192). The only dynamic is generated by the environment itself (seasonal flooding) and they directly link resource use and availability. Although sympathetic to the more constantly wet conditions in the Levels, there is limited conceptualization of either the cultural evaluation of environmental change or landscape itself in this approach.

The only attempt seriously to incorporate a sense of the achievement of landscape knowledge and the cultural appraisal of resources has been that generated by the Assendelfer Project (Fig. 1.2; Brandt et al. 1984; Brandt & van der Leeuw 1987). In it, reconnaissance and transhumance are seen as mechanisms of investiture effectively to scout out and know land, and from which permanent settlement in drying wetlands may arise. One shortcoming of their work is that permanent settlement/seasonal usage are essentially envisaged as exclusive rather than options. In ‘niche situations’ (dry locales amid the wet) cycles of seasonal exploitation may well be maintained from dry/elevated permanently settled bases. It is in this and cultural adaptation to environmental change that the Haddenham sequence contributes to a broader understanding of wetland and later prehistoric land use in general. Within this volume land-use modelling will be attempted, but only at the most general level. Because of the limitations of the scale of the fieldwork and the above arguments as regards ‘totalities’, we will not attempt to model mathematically period/settlement densities or carrying capacities. Yes, the cognitive evaluation of landscape, but not its statistical measure.

Structuring the text

The focus of this volume’s studies is the Delphs terrace, situated immediately southeast of the junction of the River Great Ouse and peat fens (Figs. 1.1 & 1.4). While it is intended that this volume can stand independently of the first, aspects of its large-scale landscape setting and survey methodologies will be dealt with only summarily as they relate to the periods discussed here (e.g. metre test-pit sampling of the buried soils on a 50-m grid, involving 100 per cent sieved artefact recovery and phosphate/magnetic susceptibility testing; see Figs. 2.1, 2.4–2.6 & 2.15).

Therefore, though as a ‘presence’ the Ouse—or at least its palaeochannel (Figs. 1.1 & 1.3)—will also snake its way through this volume, its environmental sequence is only fully outlined in Volume 1 (Chapter 2).

Whereas the emphasis of Volume 1 is on two essentially ritual sites, the later period investigations dealt with in this volume were more diffuse and fragmented. They involve two major ‘set-piece’ excavations: the Snow’s Farm Shrine complex (HAD III) and the HAD V Iron Age settlement compound. The remaining sites were largely ‘incidental’ discoveries in areas opened up so as to achieve other goals (i.e. release of early features) or only summarily investigated during testing of cropmark enclosures. To this end, there will also be ‘backgrounding’ and ‘forwarding’ of sites. The project’s results must be fully presented, but not necessarily equally, and certainly some of the enclosures that were tested can only be considered commonplace. Nevertheless, their inclusion is warranted, if for no other reason than that they provide a sense of contextual pattern for those two main sites, that for quite different reasons can only be considered extraordinary and have significant interpretative potential. In order to structure the text, the Snow’s Farm excavations will provide a narrative link. Having been caricatured as a ‘Fenland tell’, it primarily consists of a two-phased Romano-British shrine sited on top of a Bronze Age round barrow. While the recovery of Iron
Figure 1.3. Map showing the location of main environmental cores (targeted circles) and transects, with the Ouse palaeochannel indicated in grey tone.
Introduction: Themes and Knowledges

Figure 1.4. The Upper Delphs Terrace: cropmarks and areas of investigation.

Age pottery from the pre-shrine soils attests to the proximity of (and visitation from) the neighbouring HAD IV enclosure, the barrow sealed traces of later Neolithic occupation, and Mesolithic/Early Neolithic flints were also recovered from the site. Therefore spanning all the main periods with which this study is concerned, it is the Snow’s Farm sequence that provides the immediate ‘thread’ to this volume. This is all the more appropriate given that it was the only site known in the area prior to the discovery (through aerial photography) of the causewayed enclosure in the 1970s. Investigated by John Bromwich in the 1950s, and mentioned in The Fenland in Roman Times (see Bromwich, in Phillips 1970), his fieldwork on the Delphs adds a crucial historiographic dimension to our studies.

It is appropriate that the two major sites discussed in this volume, the HAD V enclosure and Snow’s Farm complex, though of different periods, are complementary. Respectively an Iron Age settlement compound and the other variously a Bronze Age mortuary centre and Romano-British shrine, amongst the themes of this volume is the changing situation of ritual and its interrelationship with the domestic. Of particular relevance here is whether during the Iron Age ritual activity was restricted to its within-settlement expression alone (e.g. human bone and other ‘special’ deposits) or if it had a discrete architectural/site component. In this, the status of HAD IV (a small Iron Age enclosure lying immediately beside the main HAD III site and considered part of the Snow’s Farm complex) is crucial. Certainly unusual in its plan and assemblages, the question arises, was it a shrine per se? It is presented in Chapter 4, and in many ways that is the pivot upon which this volume’s ensuing chapters turn (at least those up to the discussion of the ‘formal’
Figure 1.5. The Snow’s Farm complex, 1961 (note area of gravel workings in top below trackway; CUCAP ADS 82).

Romano-British shrine in Chapter 7). To this extent it is the place of ritual amid the greatly ‘abundant’, or at least the obvious, domestic record of the later Bronze and Iron Ages (and also Roman times) that is a key concern of this volume. Though risking caricature, this is opposed to the focus of Volume 1 and the Neolithic record, where it is the situation (and detection) of the domestic that requires problematization, its ritual constructions being so readily apparent.

This volume differs from the first in the scale of its data. We are dealing here with substantial assemblages and, in two notable instances, very prolific and complicated sites. In order to present the results, extensive reference must be made to specific features and, accordingly, there needs to be greater employment of diverse numerical systems. In an attempt to maintain some sense of flow, these are kept to a minimum (the archive is not being duplicated) and where possible feature citation alone will be made (F.no.), not their constituent stratigraphic contexts ([no.]; <no.> indicates finds catalogue entry). (Note that the project’s grid, to which site as opposed to ‘landscape’ descriptions are related, unless otherwise indicated was oriented 33.5° east of true north.)

Continuing to employ a device initiated in the first volume, various analogies (ethnographic and historical) and other ‘commentaries’ are inset into the text by way of introducing indirect parallels and emphasizing key themes. Whatever their source, their aim is to broaden discussion beyond the immediate localism of the Fenland sequence. In other words, paraphrasing Sahlins (1987, and John Donne), ‘no terrace is an island’.

Archival context and other sources

In order to provide a sense of ‘depth’ of landscape practice it is appropriate to introduce this volume with Bromwich’s day-book entries (see opposite) concerning his work at the Snow’s Farm complex in
Introduction: Themes and Knowledges

Geology: First Gravel Terrace.

1953 July 18. Mr Bester found RB sherds, a first brass and a brooch which was not Roman. The rectangle mentioned above showed up well as a soil-mark after deep ploughing.

1953 July 23. APF Nos. 19 and 20 showed a (circular) mark within the irregular rectangle. July 25. APF Nos. 11 and 14 ditto not so clear.

1953 July 25 and 26. Section cut up open furrow, through southern ditch of rectangle and both ditches of circle within which the majority of the ploughed up surface finds had been made. This section called UD.1b. A feature, either side of outer sandy bank, was made of Ampthill clay, which could have been dug in S. E. corner of field (found by Holmes or Geology Survey by boring). This sealed an illegible third brass coin. Section in graph book.

1953 July 27 APF. No. 15 shows mark made by this section.

1953 Oct. 25. APF. No. 15 badly exposed.

1953 Oct. 4. Three more sherds from area of circle within square. 40917372. Round mark on APF to east of field yielded modern china.

1953 Dec. 3. With Holmes of the Geology Survey picked up more rims and bases at 40917372. He picked up a (?barbarous) radiate. At 40737363 Ampthill clay came up from 4 feet with his auger.

1954 Jan. II. A bronze pin bent nearly at right angles and a few more sherds from within the black circle at 40917372.

1955 Nov. 3. Sherds and a tile from area 40917372.

1957 Sept. Mr Bester gave long bronze object X brought further (?) to measure from this site.

Analysis of clay samples from Mr J. Bromwich.

A. With pot fragment marked UD1. Grey-brown silt with silica, and mineral clay. Organic matter common. Sand grains both rounded and angular indicating reworked and freshly weathered sand. No reaction with HCl. Flints present.

B. Granular medium textured sand. Little or no clay. Some organic matter present. CaCO3 present giving a moderate to strong reaction with HCl. Sand grains both angular and rounded.

C. Sand similar to that described under B. but containing monaxon sponge spicules and a little organic material. Positive reaction to HCl.

D. Dense brown organic clay with very little silica. Structureless. No micro-organisms. No reaction with HCl.

E. Black silty organic peat or peaty mud, composed of amorphous brown organic material with a trace of angular and rounded sand. Odd macroflint present. No HCl reaction.

F. Dark grey mixture of organic material and silica in about equal proportions. Silica rounded and freshly angular. Several macroflints present. No reaction with HCl.

Note. Samples B. and C. suggest deposition in a fresh water lake with marl forming somewhere in the near vicinity.

Sample A could be a soil.

Samples D. to F. suggest alluvial clay of freshwater origin, associated with the development of peat.

Without knowing their stratigraphic relationship it is difficult to give a more sensible appraisal of their origin.

D. M. Churchill.
therafter, he and his colleagues returned to the College Library and the County Council Record Office, Cambridge, his archive offers a unique perspective upon the region's archaeology. As is clear from his remarkably complete sketch plan (Fig. 1.7), he did much more than just fieldwalk sites in the vicinity, but investigated them at the time of their first ploughing when the fields were being taken out of pasture. In the case of the Snow's Farm site, he evidently cut a sondage along an open furrow, sectioning the compound's ditch (from which we retrieved one of his milk bottles) and what later proved to be the interior of the shrine. Thereafter, he and his colleagues returned to the site during subsequent ploughings and were able to recover a quantity of finds, though unfortunately not all can be located today (full discussion of Bromwich's findings will be made in Chapter 7).

Providing a sense of 'local voice', to this can be added a description of our 1983 excavations that Charles Bester appended to his manuscript text, Haddenham: a Parish History (1981), held in the Cambridgeshire Collection of the Central Public Library, Cambridge:

Following the 1983 harvest a party of archaeologists and students from Cambridge excavated the site near Snow's Farm, which is situated at the south west corner of an area called the Upper Delphs, farmed by A.G. Wright and Son. This land is slightly lighter than the surrounding fenland and without doubt it was an island before the fens were drained in the 17th century. The peaty soil here is very shallow, and the prehistoric surface only a few inches below the cultivated soil.

The surface soil was removed, and a remarkable series of occupations by early man was uncovered.

Firstly a ditch about six feet deep and five feet wide was found which enclosed a square shaped enclosure in which Roman pottery, coins, pins or brooches were discovered. Within this enclosure was a small octagonal enclosure, surrounded by a ditch, which had been used as a sacrificial place or temple. Burnt bone of sheep or goats had been scattered around, and several complete skeletons of sheep or goats, evidently prepared and laid out for sacrifice, were placed in the centre of the temple area. Evidence of human burials were found nearby, and also cremation pits containing human remains.

The deep ditch around this site, with the gravelly clay from the ditch thrown inward to make a bank, made a very strong defence, especially if topped by a wooden fence, of which no evidence was found. This deep ditch was filled with peaty soil, no doubt deposited by the recurring flood waters which regularly swept down the nearby river valley from the highlands which now comprise the Ouse catchment area.

Below this Roman settlement traces of Iron Age occupation were found, around which was another ditch, which had been filled with a gravelly deposit, again without doubt brought from the highlands by river floods. This ditch had been completely filled by gravel before the peat formation period, and the spoil from the river valley could easily be seen in contrast to the gravelly clay of the Delph area.

Evidence of earlier occupation was confirmed by the discovery of several Stone Age implements, so on this site we find a sequence of human activity from Stone Age, Iron Age, and the Roman period, interspersed with heavy flooding from upland waters, to fen reclamation and modern farming.

It is interesting to conjecture that when Abraham was preparing to sacrifice his son Isaac, and eventually found a lamb caught in a mountainside thicket, our ancient forbears were preparing for similar rituals on a site in Haddenham Fen.

Bester, who (with his daughter) was Bromwich's sometime assistant in the course of his Fenland researches, became a local historian of renown and the sizeable collection of fieldwalking material he kept at his home in Haddenham has, since his death, been transferred to Ely Museum. His text is not reproduced here in any kind of 'knowing irony'. His and Bromwich's fieldwalking efforts established a foundation for work along the southwestern fen-edge which the Fenland Survey 30 years later was able to build upon.

In his text Bester is unequivocal that the early inhabitants of the area were 'forebears' of today's populace. Elsewhere in the manuscript there is great emphasis (verging on wonderment) upon the emergence of monuments from out of the peat. In this and its allusions to diverse sources (such as the Biblical parallel above), his writings can be seen as akin to a folkloric tradition and are not unlike the accounts of nineteenth-century antiquarians in the region (see Volume 1, Introduction; Evans 1997b). As an informed layman, ultimately this is about making sense of 'fragments' and the provision of interpretative context, no matter how far-flung their sources.

Similarly, a recent piece by the late Ernest Papworth, local village historian of Over (who excavated with Simpson at the site of Cold Harbour Farm), emphasizes the relationship between archaeology and a lost environment. Rehearsing a number of regional stereotypes (e.g. semi-amphibious inhabitants, the fear of 'vapours' and malaria), the passing of the wild fens has been a theme of regional commentators since the early nineteenth century (arguably attributable to the marked loss of habitat through the advent of steam pump drainage). Yet, however obliquely, in this case he actually writes in reference to the results of the recent Needingworth quarry excavations (Evans &
Knight 2000; 2001) and the possibility that after extraction the land across much of the north side of the village will be restored to a nature reserve:

OUR PROUD FEN

What did our old Fen look like ‘in the days of yore’, before the Great Drainage scheme of the 17th century, and even long before that?

Looking across from Le Bury Holme towards the river and southwards it would have resembled, especially in winter, a great vast lake studded with numerous small proud islands just above the waters surface; fringed with tall rustling reeds, willows, waterlily’s, marsh plants and many types of aquatic vegetation.

Today’s transformation gives no idea of the vastness of this great mere and its ancient flora which covered the land, now yielding fruitful crops with only the odd name to remind us of those far distant days.

This now well-drained land no longer supports the abundance of fish and wildfowl, and in particular the great quantity of eels from which the nearby city of Ely took its name.

Thankfully so has gone the Fen Ague, the fevers, malaria, rheumatics and deplorable conditions which these earlier Fen Edge peoples had to endure.

All the low ground was uninhabitable, and in any case believed to be haunted, it was a very brave and foolish man who ventured into this huge and hideous environment on a dark and cold winters night.

The fog and ‘dark vapours’ which rolled in from the river created mysterious shapes, enough to put fear into the most stout-hearted, if there was any place for the Devil to dwell it would most certainly be here.

It is therefore not surprising that they were called ‘Half-Savages’, trying to survive in this semi-amphibious life as they waded, swam and poled their flat-bottom boats from one island to another.

There is still however a certain sadness, even today in watching the destruction of the present fen, though in all conscience we know that it is necessary and right to change this once howling wilderness into benefits which we will all enjoy.

Maybe, one day in the not too far distant future we will once more have golden-reed beds, a variety of waterfowl, numerous dragon-flies and gaudy winged insects, with great pike swimming beneath overhanging dark-green willows, heronshaws standing like unemployed curates in the shallows and lighter green reeds swaying in a gentle breeze. Fidgety coots jerk their way across the waters, and perhaps the return of the Bittern to hear its distinctive boom as it stretches its long neck heavenwards, letting everyone know of its presence and territory.

High above this idyllic scene the lone Hawk or Kestrel hovers, its sharp eye detecting a small timid water vole, followed by a steep dive and in its sharp claws lifting the doomed animal away to the distant trees on the higher ground.

This action disturbed the terrified wild-fowl as the pipped and clacked in small groups, suddenly the air was filled with the crackle and chatter of their wings as they raced across the waters to become quickly airborne, bringing forth another even louder boom from the startled Bittern, and

Figure 1.6. A landscape liable to flood (RAF photograph of 1947 floods). Standing proud of the water level and visible in earthwork form are the Snow’s Farm barrow/shrine (A) and the Cut Bridge Farm complex (B; see Chapter 8); water sits in the ditch profile of the HAD V Iron Age enclosure (C; see Chapter 5) and another riverside enclosure to the east (D).
Figure 1.7. Snow's Farm, 1953. 1 & 2) Bromwich notebook sketches with those to left showing early stages of plough-exposure; A–B on '1' is registered to north–south 'furrow line' on '2' (cf. Fig. 7.2; Cambs. County Council Record Office); 3) left, contemporary aerial photograph (?by Bromwich) owned by Charles Bester that clearly shows the plough-exposed outline of the site; right, verso.
Johnanson Bromwich:
explorer of 'the gloomy places'
by P.J. Smith

John Bromwich (1915-90), Fellow of St John's and then Wolfson College, Cambridge, is remembered as an eccentric, meticulous, perfectionist 'man of parts' and 'scholar of minor fields', who cultivated life-long enthusiasms for philology, numismatics and field-walking. According to his own description, Bromwich (1956) spent 'thirty years umbrella poking in the Fens', during which he carried a 'great weight of potsherds back to Cambridge, mostly by bicycle' (1970, 125). He had been introduced to the study of fen topography and extinct waterways as a boy growing up in Cambridge by the local archaeologist and geologist, Gordon Fowler. He took First Class Honours in Cambridge University's Archaeological and Anthropological Tripos in 1937, with a thesis on 'Population and Economics in the Southern Fenlands'. Following graduation he became a Scholar of St John's for 1937-38, was awarded a College Research Grant for 1938-39, and received a Goldsmiths' Senior Studentship to begin postgraduate work at Cambridge, studying the 'development of the vocabulary of the English language from Anglo-Saxon to Middle English'.

In September 1939, Bromwich, who had a distinguished career in the Officer Training Corps as a student, was commissioned into the Middlesex Regiment and was recognized as an expert in the mathematically precise use of machine guns. First stationed guarding the London docks, he was later posted to Egypt and then to the British Military Mission in Greece. Major Bromwich was demobbed in 1946, suffering from partial deafness and shell-shock. According to his family, he never recovered from the War, remaining psychologically frail until he died.

Bromwich began teaching 'The History of the English Language' for the Cambridge English Faculty in 1947. In 1949 he was appointed to a University Assistant Lectureship, offering papers in Middle English, Norse and Anglo-Saxon, and in the same year was elected to a Fellowship at St John's. By 1956 Bromwich was a University Lecturer in the English Faculty, a position he continued to hold until retirement in 1982. Unfortunately, he struggled recurrently with ill health and found it difficult to complete his philological studies.

His sanctuary seems to have been the fens. Mary Cra striker, former Assistant Curator in the Museum of Archaeology and Anthropology, remembers (pers. comm.) that Bromwich 'got on very well with the local farmers', enjoyed chatting in pubs and therefore quickly knew of possible artefacts or sites found by residents. Others interviewed add that Bromwich, knowledgeable in geology, archaeology and waterways, was most happy when in the Fen. 'For many many years, after the War, Bromwich assiduously, systematically, precisely recorded anything there was to find in the area north-west of Cambridge ... he would ring at 6.30 on a Sunday morning' to ask Roman pottery specialist, Brian Hartley (pers. comm.) to join him fieldwalking. According to Hartley, Bromwich admired and often quoted Fox's Archaeology of the Cambridge Region (1923), using it as his main inspiration. Bromwich successfully applied Fox's topographical mapping approach to a concentrated geographical area.

Sylvia Hallam of the University of Western Australia was introduced to Fenland field survey methods by John Bromwich when she was a Cambridge research student in 1949 and employed his methods in her extensive investigation of Roman settlement in Lincolnshire. She remembers that he was concerned about the casualness of Fox's maps (pers. comm.) which he felt were not sufficiently precise. Rather than Fox's 1/4-inch per mile scale, Bromwich used 6" Ordnance Survey maps, introduced an exact method of documenting find locations by paced field measurements and carefully transferred the field information to an accurate card catalogue.

Bromwich retreated into fantasy as he aged, sadly becoming increasingly eccentric in his behaviour, and he was no longer able to collect Fenland artefacts for the Museum. Moving to Cromer in 1982, he died on 25 December 1990.

Figure 13. Bromwich, punting on the Cam in 1947. Fascinated by local waterways since boyhood, he spent many hours exploring the fens calling them 'the gloomy places' (pers. comm., Mrs Bromwich, photograph courtesy of Mrs Bromwich).
Table 1.1. Radiocarbon determinations.

<table>
<thead>
<tr>
<th>Site</th>
<th>Laboratory number</th>
<th>Context Material</th>
<th>Radiocarbon determinations</th>
<th>δ13C (%)</th>
<th>δ15N (%)</th>
<th>Calibrated date (68% confidence)</th>
<th>Calibrated date (95% confidence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAD III</td>
<td>HAR-6176</td>
<td>1072, Charcoal, unidentified</td>
<td>3950±90</td>
<td>-25.0</td>
<td>-</td>
<td>2580-2300 cal. ac.</td>
<td>2580-2140 cal. ac.</td>
</tr>
<tr>
<td>HAD III</td>
<td>HAR-6181</td>
<td>1004, Charcoal, unidentified</td>
<td>3810±70</td>
<td>-25.2</td>
<td>-</td>
<td>2400-2140 cal. ac.</td>
<td>2400-2020 cal. ac.</td>
</tr>
<tr>
<td>HAD III</td>
<td>HAR-6177</td>
<td>1033, Charcoal, remaining</td>
<td>3190±70</td>
<td>-25.1</td>
<td>-</td>
<td>1520-1400 cal. ac.</td>
<td>1520-1310 cal. ac.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>subsample identified;</td>
<td>Quercus sp., heartwood,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.42 g (98.4%);</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quercus sp., sapwood,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.12 g (1.6%);</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>unidentified, 135 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Rowena Gale, 1999)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAD III</td>
<td>HAR-6179</td>
<td>1060, Charcoal, unidentified</td>
<td>2700±90</td>
<td>-27.4</td>
<td>-</td>
<td>970-790 cal. ac.</td>
<td>1025-870 cal. ac.</td>
</tr>
<tr>
<td>Oxa-8671</td>
<td>BM-2678</td>
<td>2172</td>
<td>3360±50</td>
<td>-21.9</td>
<td>-</td>
<td>1740-1530 cal. ac.</td>
<td>1750-1520 cal. ac.</td>
</tr>
<tr>
<td>HAD V</td>
<td>HAR-6764</td>
<td>2655</td>
<td>2110±70</td>
<td>-27.1</td>
<td>-</td>
<td>350-10 cal. ac.</td>
<td>370 cal. ac. - cal. AD 60</td>
</tr>
<tr>
<td>HAD V</td>
<td>HAR-6766</td>
<td>2289 Large twigs</td>
<td>1990±60</td>
<td>-27.3</td>
<td>-</td>
<td>80 cal. ac. - cal. AD 80</td>
<td>170 cal. ac. - cal. AD 130</td>
</tr>
<tr>
<td>HAD V</td>
<td>HAR-6767</td>
<td>2735 Large twigs</td>
<td>2000±60</td>
<td>-23.4</td>
<td>-</td>
<td>50 cal. ac. - cal. AD 70</td>
<td>170 cal. ac. - cal. AD 130</td>
</tr>
<tr>
<td>HAD V</td>
<td>HAR-6768</td>
<td>1635/1679</td>
<td>1970±60</td>
<td>-28.5</td>
<td>-</td>
<td>cols. AD 50-120</td>
<td>110 cal. ac. - cal. AD 140</td>
</tr>
<tr>
<td>HAD V</td>
<td>HAR-6769</td>
<td>1698/1706</td>
<td>2280±80</td>
<td>-27.4</td>
<td>-</td>
<td>400-180 cal. ac.</td>
<td>410 cal. ac. - cal. AD 60</td>
</tr>
<tr>
<td>HAD V</td>
<td>HAR-6770</td>
<td>1770/1794</td>
<td>1990±120</td>
<td>-25.8</td>
<td>-</td>
<td>170 cal. ac. - cal. AD 130</td>
<td>360 cal. ac. - cal. AD 320</td>
</tr>
<tr>
<td>HAD V</td>
<td>HAR-6771</td>
<td>1780/1795</td>
<td>2110±90</td>
<td>-28.0</td>
<td>-</td>
<td>350-10 cal. ac.</td>
<td>390 cal. ac. - cal. AD 80</td>
</tr>
</tbody>
</table>

an enquiring glance from a pair of otters as they shared a large eel on the sandy slopes.

Pairs of dainty snipe will return to dart and break away in opposite directions when disturbed, brilliant butterflies will rest on the tall reeds beneath summer suns, this time their will be no more typhus or diseases for the children, no more typhus or diseases for the children, no more

Many feet below the present level of this land, on the gravel once lived fair Celts and Bronze Age peoples in their primitive huts, burying their dead in large round Barrows; living where they could on the higher islands.

Today we are discovering their relics of the past and preserving them for future generations, as we perhaps sit silently beneath the vast tablecloth of a typical fen sky; can we therefore pause and remember how this old Fen has given us sustenance for countless centuries; let us enjoy it and honour it and pay it the respect it deserves.

But will it ever again be the silent fen of solitude and quietness, or will the clean air be filled with the pollution of car engines, the over-loud transistors
with their selfish cacophony of noise, the barking of unattached dogs and the ever persistent barbecue to drive away the birds to spoil for everyone the paradise which was the very reason why they came in the first place, perhaps not; like dear old Mr Gladstone we 'Must wait and see!' (24.11.'98 in Over Exposed no. 114)

Certainly jarring with any sense of scientific practice, do such accounts as the latter two have any place in a modern site report? Both provide a sense of 'traditional' village voice in their commentary upon recent excavations. Greatly concerned with local identity, they act to counterpoint and, in some respects, echo these volumes' ethnographies. It is this emphasis, the need for a narrative of immediate relevance, that primarily distinguishes their accounts from more academically informed texts. Particularly relevant in Papworth's piece is the ethos of archaeology revealing a hidden marshland past, but which has long been known to be there. In the same way that Bester draws upon Biblical precedent, this is about fitting results into established frameworks of knowledge, an issue of obvious relevance to any programme of investigation. Finally, the emphasis on change and succession in the countryside within the latter contribution is a theme that will be returned to in this volume's final discussion.

Radiocarbon determinations

by P. Marshall

Thirteen radiocarbon determinations have been obtained on samples from Haddenham Project sites relating to this volume. The Harwell Laboratory processed ten samples between 1988-1990, two samples were processed by the British Museum between 1982-1987, and one by the Oxford Radiocarbon Accelerator Unit in 1999. The principal aims of the dating programme were to:

1) date the sites and establish their temporal relationships in the landscape;
2) date the construction of structures.

Prior to submission for dating, wood and charcoal samples were not routinely identified as either short-lived species or of roundwood or sapwood. Subsequent examination of a sub-sample of material remaining from some of the original samples submitted for radiocarbon analysis has resulted in HAR-6177, HAR-8764, and HAR-8766 being identified as predominantly oak heartwood. Thus these are affected by an unknown age-at-death offset (Bowman 1990) with respect to the archaeological events they were used to date. The remaining sub-sample of HAR-10513 was mainly unidentified bark and thus, assuming that it was not residual material, should relate to the initial silting of the ditch at HAD IX. No material remained from HAR-10513.
and the age offset is therefore unknown, but all are older than their contexts by an unknown amount.

Radiocarbon analysis and quality assurance

The 10 samples processed at Harwell were pre-treated using the acid-alkali-acid process (Mook & Waterbol 1985, 36-7). The samples were then combusted to carbon dioxide and synthesized using a method similar to that initially described by Tamers (1965) and a vanadium-based catalyst (Otlet 1977). The radiocarbon content was measured using liquid scintillation counting as described by Otlet (1979).

The bone sample processed at Oxford was prepared and measured using methods outlined in Hedges et al. (1989) and Bronk Ramsey & Hedges (1997). The pre-treatment method was a collagen extraction (Law & Hedges 1989; Hedges et al. 1989) followed by gelatinization and separation by filtration (Bronk Ramsey et al. 2000).

The wood-bank sample processed at the British Museum (1982–1983) was pre-treated with dilute acid and alkali (Ambers et al. 1987) and the charcoal sample (1986–1987) with 1 M HCl, followed by washing in water and a dilute alkali for the removal of humic acids (Ambers et al. 1989). The radiocarbon content of both samples was measured by liquid scintillation counting of benzene using the procedures outlined in Burleigh et al. (1976).

All three laboratories maintained a continual programme of quality assurance in addition to participating in international inter-comparisons (Rozanski et al. 1992). These tests indicate no significant offsets and demonstrate the validity of the precision quoted.

Results and calibration

The radiocarbon results are given in Table 1.1, and are quoted in accordance with the international standard known as the Trondheim convention (Stuiver & Kra 1986). They are conventional radiocarbon ages (Stuiver & Polach 1977).

The radiocarbon determinations have been calibrated using the maximum intercept method of Stuiver & Reimer (1986) with data from Stuiver et al. (1998) and are quoted in the form recommended by Mook (1986) with end points rounded outwards to 10 years. Ranges are quoted at 95 per cent confidence unless otherwise specified and have been calculated using OxCal v3.5 (Bronk Ramsey 1995, 1998). The probability distributions (Fig. 1.9) are derived from the usual probability methods (Stuiver & Reimer 1993; Dehling & van der Plicht 1993).

The estimated date ranges quoted in italics are derived from the mathematical modelling of the archaeological chronology and are posterior density estimates.

The results of stable isotope analyses undertaken at Oxford on the one bone sample dated are shown in Table 1.1. The δ13C value of −20.0‰ and δ15N value of 12.0‰ are consistent with a very largely terrestrial diet, with only a minor component of marine protein (Chisholm et al. 1982; Mays 2000; Schoening et al. 1983). The C:N ratio suggests that bone preservation was sufficiently good to have confidence in the radiocarbon determination (Masters 1987; Tuross et al. 1988).

Figure 1.10. Section conventions.
Chapter 7

The Shrine Complex: Situating Ritual (HAD III)

Having considered the Iron Age landscape, in this chapter we return to the main narrative focus of this volume, that is the Snow’s Farm complex and, in particular, its Roman shrine. In the course of his trial work in the 1950s Bromwich identified the ‘circle in the square’ as a Roman occupation site (Site 4073 in Phillips 1970). The recognition of its underlying barrow came only later through the Fenland Survey — effectively, a ‘circle in a square on a circle’. We suspected from the outset that the site was ‘special’ and complicated, and this sense was further supported by the higher test pit densities within the area. However, it was only upon cleaning of the machine-stripped surface and the appreciation of how prolific were the site’s finds, and, most telling, the recognition of ‘placed’ animal deposits and the quasi-octagonal form of the southern ‘circle’, that we realized that this was a Romano-Celtic shrine. In other words, it fulfilled a type and could be named.

The naming of sites is always a key stage in the process of excavation. It allows us to come to terms with what are its established expectations (and thereby measure variation from the norm) and, too, address what are ‘classic’ and more recent research issues. Effectively turning sites into labelled ‘building blocks’ of disciplinary knowledge, this is, of course, a strength in terms of the provision of context: what to read, whom to talk to, etc. Yet it is equally a release from ambiguity, and to entitle an entity takes us a long way towards ‘knowing’ and containing it. In this case, such ‘type’ identification also informs us of the place of and, at least what was thought to be, the greater compartmentalization or distancing of ritual in Roman times as opposed to later prehistory. (Since then, of course, more recent excavation has demonstrated the scale of ritual deposition on otherwise domestic Roman rural sites.) Nevertheless, after initial cleaning and cognitive procedures, that this was a shrine could be accepted at face value. Its realization goes far to frame the ambiguity of the adjacent HAD IV enclosure — was it a shrine? In all honesty, if excavating that site in isolation the question would probably not have been asked. It is only by its proximity to the incontestable Roman shrine that the question becomes pertinent: does the latter provide context for the former?

Against this background of ‘type’ identification, aside from broader issues relating to earthwork interaction within the cultural landscape which the barrow-top shrine raises, the patterns of the shrine’s operation, votive associations, its interrelationship with contemporary settlements (i.e. depositional ‘distance’) and the changing character of its ‘gatherings’ will be explored. Equally, the degree to which this was variously a site of officially state-sanctioned religion or reflects a more deeply embedded ‘native’ tradition will also be considered. Finally, although the terrace situation of the shrine was then obviously marginal within the broader Roman landscape, given the nature of ritual exchange and the ‘place’ of its associated activities, the complex has parallels in relationship to the role of the earlier causewayed enclosure.

In part engendered by the relative ‘poverty’ of this rural shrine (e.g. lack of inscriptions and insubstantial building remains), the approach taken to its analysis differs from that of most Roman shrine / temple sites. Instead of concentrating on formal art-historical attributes (e.g. iconography and architecture), its focus is upon the character of depositional practices and, particularly, the act of sacrifice. This is, effectively to treat the site as if it were an ethnographic study — its concern is with the expression of ‘time’, transformation and the translation of ritual.

The shrine sequence

From the outset the main framework of the site’s sequence should be outlined. It begins with the construction of an octagonal Romano-British shrine and associated building on the flank of the barrow and its enclosure in a rectilinear ditch system in the second century AD (Phases 1 & 2; Figs. 7.1 & 7.2). Evidently dismantled during the third century AD, it was re-established in the early fourth century AD when
a sub-square post-built shrine (2) was constructed on the crown of the barrow that was enclosed within a substantial range of posts, and further post settings probably relate to other versions of this final setting (Phase 3). This secondary shrine was abandoned and partially dismantled in the mid fourth century due to freshwater flooding.

In terms of its 'unambiguous usage' in the Iron Age, apart from a few sherds, the period is only represented by the formation of a soil horizon across the weathered profile of the barrow (Period II). Stratigraphically, this horizon has been identified as a reduced/oxidized grey sandy loam some 0.08-0.15 m thick with calcium carbonate motting, the latter probably deriving from freshwater flooding in Roman times (see French, Chapter 2 above). However, the pottery scattered across the barrow of this period obviously interacts with the adjacent HAD IV assemblages (see Chapter 4).

Within the broader context of the site's sequence as a whole, the Romano-British shrine activity corresponds with Period III. The subsequent period of usage relates to post-Second World War activity when the field in which the site is located was first deep-ploughed (Period IV). F. 72 refers to two (north-south) linear slots, each approximately 0.25 m wide and 0.10-0.12 m deep, which cut across the octagonal shrine (see Figs. 7.3 & 7.8). Filled with loose black peaty alluvium, these represent the base of Bromwich's 'boxed furrow' trial slot which he dug and drew in the summer of 1953. Although providing little dating evidence, a milk bottle of obviously post-war attribution was recovered from the fill of the main enclosure ditch on the line of Bromwich's transect.

Bromwich's records
At first glance it is difficult to evaluate just how Bromwich recovered his plan of the site, which as a sketch generally seems accurate in its (imperial) measurements and orientation. (The mapped distances are only relative and in Fig. 7.3:B feature interrelationships have been adjusted according
to their noted measurements. His main plan appears to differ from ours as, while he notes the eastern side is three yards longer than the other three, each at 42 yards, he draws the enclosure as a square.) It seems extraordinary that he could recover so much from only aerial photographs and on-ground observation during the course of deep ploughing augmented by a single north–south sondage (sectioning the southern length of the main enclosure ditch). Given these techniques it is interesting that, although he did not see any of the complex network of ditches on the southern side of the main compound, he recorded a distinct east–west 'linear' running parallel with and beyond its northern perimeter. Equally he notes the existence of 'gate(s) on the north and eastern sides of the main enclosure. While, as witnessed in interruptions to and irregularities within the compound's surrounding banks (see below), these entrance-ways have some support from our excavations, no evidence was found whatsoever for the northern ditch line despite that its western end should have projected into the area of excavation. Presumably only a slight feature that has subsequently been ploughed-out, it is conceivable that the latter relates to a pre-main enclosure ditch system that we found along its southern side. However, lying 4.50 m beyond (and parallel with) the northern line of the compound, it appears symmetrically centred with that side and, 20 yards long (c. 18.25 m), to have definite terminals. In other words, there is no evidence of any return to the south to join with the main system. A more plausible explanation is that this ditch bounded the northern side of an east–west trackway that was recovered in the course of the 1982 HAD II excavations to the northeast. Fully presented in the chapter which follows, its line must have determined the skewed orientation of the northern side of the main enclosure.

Although Bromwich did not recognize the site's underlying barrow, on his sketch plan he mentioned that the ground north of the main shrine (his 'house') was 'high'. On his initial plans showing only the eastern half of the site, north of the enclosure he indicates a 'deep' ditch running east–west (Fig. 1.7:2). Lying parallel with the plough furrow, this is probably of post-medieval attribution. However, in his first sketch this is shown as having a 'circle' along its length and this could well have been a large pit relating to pre-Roman occupation within the vicinity.

Bromwich (and Bester) retrieved a wealth of material from the site. His pottery is discussed within Chapter 8, and tile and coins were also recovered. Most important for the site's interpretation is the metalwork that was then collected and this is detailed below in the section on small finds.
Excavation policy

In order to interrogate the site's artefact distributions, buried ground surface horizons were excavated by metre units, with 'small finds' spot-allocated. Although not absolutely consistent within its application, the majority of the deposits were also sieved in order to control size-fraction bias (5-mm mesh). This was undertaken on a proportional basis. Generally at a ratio of 1:3-4 buckets or barrows of spoil (c. 25-30 per cent), in the case of obviously 'special' deposits this rose to 100 per cent. The most formalized application of this policy occurred across the peaty ground surface deposits adjacent to the main shrine ([692]/[788]). There, by metre-square, every other bucket of spoil was sieved (50 per cent sample); in the case of layer [692], two east-west metre-wide transects (9.00 & 10 m long) were 100 per cent sieved.

Magnetic-susceptibility survey

by G. Yates

The same techniques and equipment were employed as on the neighbouring HAD IV enclosure and these need not be reiterated. The resulting pattern of mineral magnetic measurements recorded on a metre grid from across the stripped surface provides support for Tite & Mullins' theory that ditch fills are identifiable by higher susceptibility values (1971); the compound ditch surrounding the site is clearly outlined by values at least four times, and often up to ten times, higher than those of adjacent areas (Fig. 7.4). The fact that the fill is particularly prominent in the northern and eastern parts of the site is probably a reflection of the manner of the excavation, less ditch excavation having been carried out in these localities than in those to the south and west at the time the survey took place. (Excavators' note: while at first appearing to be some manner of collapsed daub wall, traces of red burnt clay were present in the upper fills of this ditch along its northern circuit and attempts to excavate this failed to define discrete deposits. Upon discussion with the farmer, the source of this material became obvious: 'root pit fires' from stubble burning spreading down into ploughed soil cracks.)

Lower susceptibility readings tended to occur where gravels were present at the surface, for example on the banks running along the inner edge of the main compound ditch and the base of the ditch lengths then exposed, the latter implying that the underlying alluvial gravels are low in strongly magnetic material. Hence it appears unlikely that any high values recorded on the site are the result of weathering out of strongly magnetic minerals in situ and instead must be due to some other circumstances: burning or filling of ditches and similar features with topsoil enhanced by fire or 'pedogenesis'.

Surprisingly, the lowest susceptibility values on the site occurred within the octagonal shrine. This would seem to indicate that little activity, at least in terms of in situ burning (at least ground-based) actually took place within it. Alternatively, the burnt material could have been significantly different from that outside the shrine and sufficiently iron-poor to affect
the magnetic properties (for example, pure carbon is diamagnetic and will act to reduce magnetic susceptibility values). Evidence of charcoal in the field suggests the possibility of heating of such material, perhaps at levels above the floor of the shrine, but it is proposed that this material was not ashed, since such treatment is believed to increase susceptibility of samples (Oldfield pers. comm. 1983).

Immediately surrounding the primary shrine (1), and over a wider area to the northeast (approximately 15 x 20 m), susceptibility values are significantly increased. The sensor could here have been detecting compound-related activity and, with values up to 10 times greater especially to the northeast, might be revealing the fact that the main entrance to the building lay in that direction. On the other hand, the increased values also coincide with the position of the underlying Bronze Age barrow and could conceivably be an indication of this feature. The problem with the latter idea is that, if relating to the barrow, why are these higher figures not apparent within the octagon? Support for the same idea is, however, suggested by the fact that susceptibility values were found to increase with depth within the barrow. Therefore, increased values with depth seem attributable to the relatively iron-rich Bronze Age soils of the barrow.

Ambiguities: Iron Age usage

In the course of post-excavation analysis, the complex and complementary interrelationship between the HAD IV enclosure and the Roman shrine was highlighted. Resonating between each other in their ‘unusualness’, the path of their interpretation tells of the spiralling logic of practice. This must remain open-ended in relation to what we unfortunately did not dig of the shrine exterior, and other slight shrine antecedents and areas of ancillary activity may have gone unnoticed.

Admittedly at a low density (and mostly in residual context within Roman features), later Iron Age wares were found scattered throughout the area of the barrow-top. Aside from the material already described by Hill (Chapter 4), seven sherds of a Butt Beaker were recovered from the midden area immediately east of the primary Roman shrine (Fig. 7.5). Of mid-first-century AD date, these are unlikely to relate to the Roman shrine activity and must also attest to an earlier presence. Otherwise, within the distribution of the pottery two concentrations can be distinguished, falling in the northwest quarter and the southeast corner.

Apart perhaps from the Butt Beaker, which presumably was deposited as such (and subsequently redeposited), this material may just reflect agricultural manuring or was incidentally derive from the adjacent HAD IV occupation. However, Hill has argued for a ‘special’ interrelationship between the barrow-top material and activities occurring at HAD IV. In the light of this, evidence of two structures were recovered from the shrine complex that may relate to its pre-Roman usage, although considerable ambiguity surrounds their status. A right-angle setting of ditches (F93) hung ‘uncomfortably’ off the southwestern corner of the primary Roman ditch system along the southern side of the shrine compound (Figs. 7.5 & 7.15). Laid out with straight sides 6.60 m long in the south (east–west)
Figure 7.5. HAD III: distribution of Iron Age pottery with possible (only) contemporary structures indicated in grey.

and 6.30 m along its western north-south axis, the two lengths of this ditch met in a very ‘tight’ corner to enclose an area of 27.50(+1) sq. m. 1.10–1.40 m wide and only 0.13–0.18 m deep with a broad slightly concave base (0.75 m wide; Figs. 7.16 & 7.17), this shallow feature was filled with quite clean, dark grey-brown clay loam. Not obviously related to the large post-settings in that area of the Roman shrine, it seems to have had little discrete structural capacity and its ditch lines could not have significantly projected to either the east or north. While a shrine-ancillary function could always be postulated (e.g. warden’s or gatekeeper’s shed), this seems to compromise the evidence, forcing it into an expected model of formal shrine layout.

Concerning its dating, one length appeared to be sealed by upcast associated with one of the primary Roman ditches. However, most significant is the finds evidence. It lies adjacent to the area of the highest Roman densities and, whilst admittedly F93 was not intensively excavated, that the only pottery recovered was a sherd of later Iron Age attribution suggests that it had largely silted up prior to the main phase of Roman activity (a Roman sherd was recovered from its surface). Against this, it could be argued that, set within the corner of the Roman approach ‘Avenue’ and the primary compound ditch, its situation seems, at the very least, sympathetic and possibly pivotal to the shrine. It could only be of pre-Roman attribution if its location determined the line of the subsequent shrine boundaries.

Given the constraints upon its recovery/exposure, the only really valid explanation of its plan would be that it was of sub-square form, with its eastern side (and possibly the northern) having later been truncated by Roman ditches. In the light of its probable Iron Age date there would be two ways of interpreting this ditch structure, either as a square barrow (a cemetery of this type is known from cropmarks north of Willingham: Hall 1996) or as a more ubiquitous shrine-ritual-related setting. If the latter (and no human bone was after all recovered in association) then parallels could also be drawn with a sub-square ditch setting recently excavated at Foxton, Cambs. (Structure 3: Price et al. 1997, 24–6, fig. 12). However, more immediately, its plan (especially if open on the north) would have affinities to the Phase 3 Roman timber shrine which crowned the barrow (Shrine 2). Potentially telling of the character of pre- and late Roman (‘non-State’) ritual practices, this is a theme that will be returned to below. (If the F93 ditches were of Roman attribution, then they would have to be assigned to the primary shrine phase and their interpretation would fall back upon some manner of ‘keeper’s shed’ explanation.)

The other structure of possible pre-Roman attribution is a ‘diagonal’ timber post range and quasi-oval setting described below in the context of the site’s secondary shrine(s) (Fig. 7.19:B:2A). Whilst conceivably of later Iron Age date, given the general vagaries of its layout and that locally its range had continuities with that of (Roman) Shrine 2, it is much more likely to be of Roman attribution. The only reason why it would be assigned to earlier usage would be a paucity of direct dating evidence and that the seemingly southeastern
The Shrine Complex: Situating Ritual (HAD III)

'aspect' of its central setting would better accord with Iron Age systems of orientation.

The octagonal shrine (Phase 1)
The sealed ground level within the area of the main shrine compound varied between 2.85-3.25 m OD and, on the southern eroded flank of the barrow, generally lay between 2.85-3 m OD (Fig. 7.2). The surface, however, within the interior of the primary Roman shrine constructed on this flank (immediately above the later Bronze Age cremation cluster) was raised to 3.05-3.15 m OD. The possibility that this structure was built upon a later Bronze Age satellite mound has already been discussed and conditionally dismissed. This localized elevation was instead produced through the redeposition of soils from the crown of the barrow onto this side (Fig. 7.9). The redeposited horizon was very mixed and generally consisted of mid grey sandy loam with pockets of black peaty loam (reflecting root action) and extensive iron pan staining. Within it were lenses of white marl flecking and what seemed to be pockets of off-white fine sandy mortar. This latter inclusion was only found within the confines of the main shrine footings and possibly reflects the percolation of floor and/or wall materials.

The level of buried ground surface beneath the shrine generally lay at c. 2.85 m OD, and the redeposited soils bedded to a maximum depth of 0.20 m so that the shrine stood 0.10-0.20 m above the exterior surface on its west, south and east sides. On the north side, these make-up layers were laid so as to form a roughly level surface with the weathered profile of the barrow. The dumped soils were not revetted in any manner and rather 'feathered-out' or mounded-up from a radius of up to 3 m beyond the shrine's footings. Bromwich, in his observations of the site, actually refers to finding a ditch around this structure. No trace of this was found, and it would seem that he interpreted the depression formed between the buildup for the shrine and upcast from its main compound ditches as a cut feature.

The primary shrine (Shrine 1) was itself defined by a ring of dense gravel (F:59), which upon cleaning

Figure 7.6. HAD III: A) looking south during machine-stripping of compound with octagonal shrine visible (the surrounding plastic bags indicate surface finds); B) looking north across area of octagonal shrine with surface strung in metre grid (note black peaty deposits bordering right/eastern side of its gravel footing). (Photographs G. Owen.)
proven to be of quasi-octagonal plan (Figs. 7.7 & 7.8). Subject to extensive plough damage, there were difficulties in its definition. It can, however, be established that the structure was approximately 8.5 m across and that each of its eight sides was approximately 3 m long (2.8-3.0 m). The gravel ‘ring’ actually seemed to be a 4-9 cm-thick pad-footing, which at points appeared to have been slightly cut into the make-up mound by up to c. 3 cm (Fig. 7.9). The footing itself was composed of dense and compacted sandy orange-brown fine and medium gravels, and was 0.7-1.5 m wide (0.8-1.0 m average). Certainty of its exact dimensions is difficult as it was surrounded by a c. 2-m radius of patchy weathered gravels derived from this pad. While interpreted as being continuous, there was an irregular 1-m ‘hole’ in its northwest side; rather than reflecting the location of a doorway (for which there was no other evidence in the immediate area), this gap simply reflects differential plough-damage.

Bromwich actually described this footing as the bank of a circular enclosure, and recorded it as surviving as a ‘mark’ within the topsoil c. 0.22 m high. In his sketch plan of 18 July 1953 he noted the north side of this feature to be ‘gravel’ whereas its southern side is referred to as ‘red’; this could well indicate the differential survival of the height of the wall-line (‘red’ possibly referring to daub). Certainly in the aerial photographs which Bromwich had taken of the site as ploughing proceeded in 1953, the line of this ‘inner enclosure’ is quite striking and is visible on all sides except in the east (Fig. 1.7:3). Clearly it had undergone severe plough-damage in the intervening 30 years until its excavation.

The eastern break which Bromwich consistently recorded in the F.59 wall-line (5’ across in sketch plans) could correspond to a tongue of compacted orange sandy gravel. This we found projecting for some 2 m beyond the footings on the eastern side, where it was bordered by a narrow band of sandy grey loam and gravel trample (Fig. 7.8). These deposits sloped down from the F.59 footing and must represent a threshold or porch metalling. This interpretation would be supported by the fact that one definite post-hole ([905]/[907]; 0.33 x 0.49 m; 0.10 m deep) and another “possible” were found to be cut into this gravel surface approximately 1 m out from, and parallel with, the eastern wall-line; they lay 1.90 m apart.

Because of post-depositional flooding, plough damage, and the mixing of its make-up deposits, it was extremely difficult to distinguish cut features within the shrine structure and along its gravel footings. Within the interior only two possible post-cuts were distinguished ([875]; [950]) set c. 2 m within the eastern interior of F.59, very approximately aligned with its porch-way posts. 0.35-0.45 m in plan dimension and 0.10 m and 0.18 m deep, these post-holes were filled with sandy loam. This is not to say that further internal post-holes/pads did not exist, but simply
were not recognized, and some could have remained masked by associated deposits.

Within the line of the F.59 footing itself, only a few possible stud post-holes were recognized. Generally ovoid, these were 0.35-0.40 m across and 0.10-0.15 m deep with flat bases; they were filled with sandy loams with a varying gravel component ([686], [791], [1000] & [683]). While their recovery was so piecemeal as not to warrant analysis, they may have been set at the corners and mid points of each side of the octagonal footing.

Within the eastern interior of the foundation line (north half) was a disturbed area extending over 2.1 x 1.5 m (F.77). Defined by spreads of dark grey clay loam with large fragments of charcoal, building stone and mortar, these filled a hollow 0.15 m deep with a broad concave base. This was associated with (cut by) at least two, and possibly more, linear slots, 0.70-0.85 m long, 0.15 m wide and 0.05-0.06 m deep, which were also filled with a dark grey loam; an associated post-hole was filled with black peaty loam ([896]; 0.45-0.30 m, 0.13 m deep). A feature of such an ambiguous character as this is obviously open to a number of interpretations:
1. It was almost entirely mis-dug and simply represents disturbance in the area of the eastern door;
2. Post-shrine pitting;
3. The base of some manner of altar structure which post-dated the operation of the eastern doorway and was inset into the eastern side after a secondary doorway was established in the north (see Discussion).

Cut/placed within the make-up deposits of this structure were a series of bone deposits of obviously votive significance (Figs. 7.8 & 7.49); [1008]; a complete sheep skeleton set at the mid-point of floor was a primary deposit (Figs. 7.12.C & 7.9); F.94 ([796/797]), a shallow pit situated in the eastern middle of the
Figure 7.9. HAD III: section across Shrine 1 interior (see Fig. 7.7 for location).

The floor area contained six (or more) cattle mandibles (Fig. 7.11), and scattered about the interior periphery of F.59 on the east, west and south sides were a series of eight/nine sheep mandibles and hooves burials which lay within 2.5 m of the wall-line ([798/895], [865], [868], [876] [884]–[886], [890] & [959]: Fig. 7.10). The latter probably reflects the burial of fleeces/hides, and two of these settings had coins set between the mandibles while another may have been associated with a bronze pin ([959]). There is no reason to associate these placed deposits with only primary activities and this deposition could well have continued into the secondary phase of this building's usage (i.e. upon its demolition). This interpretation would only be possible if the shrine structure did not have a solid mortar floor, for which no direct evidence was found even during Bromwich's investigations.

Access into this primary shrine building would appear to have been from the east and this gains credence from the fact that extensive metalled surfaces were found on that side of the structure. Lying c. 2.5 m to the east of it was a compacted gravel surface mixed with grey brown sandy loam (5.75 m wide; [816]: Fig. 7.7). While this layer was only 7.5 m long, it would appear to have conjoined with [695] to the north (4.5 m wide), which together formed a metalled surface 21.5 m in length. This may represent a northern continuation of the 'Avenue' which approached the shrine from the south (see below) or, more likely, relates to the adjacent gravel spread which sealed the HAD IV enclosure lying immediately to the east.

In the northwestern corner of the shrine compound was a cluster of shallow intercutting pits (maximum depth 0.15 m) extending over an area of 1.3 x 1.6 m (F.73: Figs. 7.7 & 7.12:A). Backfilled with grey sandy loam with calcium and charcoal inclusions, each contained both an articulated sheep skeleton and a pot (Fig. 7.12:B). Their relationship to the interior bank, produced from upcast derived from digging of the main enclosure ditch (Phase 2), is problematic. At one point, they seem just to underlie it, whereas the F.50 bank here almost seems to have been laid in a sub-rectangular manner as if to provide a footing for a minor structure (?altar) and, if so, this setting must relate to, or rather anticipate, the pitting sequence. What we may be seeing in this immediate area is a repeated pattern of ritual deposition which could span the first two phases of the shrine. Unlike the sheep head-and-hooves deposits within the shrine floor, the F.73 deposits all included a complete pot, which could suggest the occurrence of a distinct rite taking place out-of-doors, but still within the confines of the shrine compound.

Immediately south of the gravel spread adjacent to the primary shrine (exterior to the eventual area of the shrine compound) a weathered and compacted metalled surface extended over c. 3.50–4x8 m (F.68: Figs. 7.14 & 7.15). Consisting of iron-panned gravels
mixed with grey sandy loam bedding upon the surface of the buried soil ‘A’-horizon, on both its east and west side this was flanked by ditches (F.54 & F.53 respectively) and to the north was apparently truncated by the compound’s ditch system (F.51).

The eastern flanking ditch, F.54, which survived over a length of 9.10 m, was 1.50–1.85 m wide (average 1.65 m) and 0.25–0.38 m deep (Figs. 7.14 & 7.16). At its south terminal was found a large post-hole (F.87; 1.60 x 1.27 m: Fig. 7.17), 0.68 m deep in total. Its upper sides splayed widely, though midway down it tapered to a post-cut, 0.80 x 0.45 m, 0.36 m deep. It was partially filled with dark brown-grey loam with frequent gravels which evidently packed an upright timber up to 0.25 x 0.45 m in plan. The post-hole was centrally aligned on the axis of F.54 and is therefore interpreted as being contemporary with the ditch. Though no similar post-cut was found in the north end of the ditch, a relatively shallow sub-circular cut was found in the base of the southeast corner of a secondary enclosure ditch (F.51), which could be the truncated impression of a timber of similar dimensions to F.87. Both F.87 and F.54 were predominantly filled with dark brown peats which became paler and siltier with depth; it is clear that the ditch was maintained and cleaned out, so that a primary fill did not accumulate to any degree.

A shallow sub-circular depression (F.90) was found to have ‘cut’ into the gravel spread on the west side of F.54 (Fig. 7.14). This extended over 1.85 x 1.60 m and was 0.18 m deep with a concave base. Filled with dark grey-brown slightly loamy peat with extensive iron pan mottles, no finds were recovered from this hollow. Although its function is unknown, it definitely was not a large post-hole.

The ditch flanking the western side of the gravel spread/avenue was excavated over a distance of 13.50 m (F.53). However, it continued beyond the limit of excavation and its southern terminal was not exposed. 1.30–3.30 m wide, while its top splayed broadly, in the main this feature was 1.35–1.65 m across. Only c. 0.30–0.40 m deep with a flat or slightly concave base (0.50–1 m across), in the north just south of its junction with F.52/F.51 a slight trough was apparent in the base of its profile. Again, as was the case with F.54, there were only limited primary deposits of slipped/weathered buried soils in this cut; it was largely filled with black peat with gravel inclusions.

Within the southern end of F.53 was also found a large post-hole (F.86: Figs. 7.14 & 7.17). 0.90 m in diameter, this penetrated 0.45 m below the floor of the ditch (0.80 m deep in total). Again, while largely filled with peat, gravel lenses and grey sandy loam...
Figure 7.11. HAD III: cattle mandible bone group, F.94. (Photograph G. Owen.)

Further north another such feature was found within the ditch. This, F.85, continued for a depth of 0.24 m below the floor of the ditch (2.13 m OD; c. 0.50 m deep in total) and, 0.75 m in diameter, it was filled with loose sandy gravel mixed with loam (Fig. 7.17). Another posthole, F.81, was found at the junction of F.52 and F.53; 0.94 x 1.15 m across and 0.67 m deep, its upper splaying sides met a near-vertical post-cut (0.34 x 0.40 m), 0.27 m deep (Fig. 7.16). Within this was also a packing fill of grey loam and gravels, and, in the black peats which otherwise filled its profile, medium-sized fragments of burnt timber were recovered. Within the base of a linear feature (F.52) some 6 m to the west was another very similar and substantial post-hole, F.69. The steeply sloping sides of this ovoid cut (0.75 x 1.30 m) dropped 0.45 m to meet a concave base. Its packing fill consisted of dark brown-grey sandy loam with fine and medium pebbles, small fragments of charcoal and scorched daub; otherwise it was filled with spongy peat (as was the ditch in which it lay) from which much pottery, including a nearly complete mortarium, and bone were recovered.

There is no reason to presume that the large post-holes associated with F.53 and F.54 fulfilled any structural function, and they may have simply acted as markers along the metallled 'Avenue' as it approached the shrine. Certainly, given their central position in these two ditches, there is no reason for post-holes F.86 & F.87 to not be primary features set so as to mark the terminals of ditches F.53 & F.54 respectively. If, however, it is assumed that the three post-holes which lie along the line of F.53 are collectively related/aligned, then the two northernmost may represent a later addition. Their alignment is slightly off that of the base of F.53 and, rather, is closer to the orientation of the Phase 2 enclosure (F.51) than its Phase 1 predecessor (F.52).

The status of the square-plan gully (F.93) set at the corner of
ditches F.52 & F.53 has been discussed above. If not considered to be of pre-Roman date then it could only have related to some manner of shrine-ancillary structure, perhaps for storage and/or as a warden/priest’s shed. The problem, however, with this interpretation is that its ditch had obviously silted up prior to the main phase of Roman usage and had no finds within it (apart from an Iron Age sherd). Moreover, if ‘occupied’, a greater finds density would certainly have been expected. While the immediate situation of the major posts within the adjacent ditches suggest that they ‘surround’ this structure (F.69, F.81, F.85-7), there is no direct spatial interrelationship that would indicate their structural incorporation with F.93 had it related to a shrine-associated building. The post-holes are set at an irregular interval and have no correspondence with the ends of F.93; nor does their location correlate across the width of the ‘Avenue’ so that there is no question of them relating to, for example, a ‘missed’ hall-type structure.

The area of the barrow mound and shrine had apparently been enclosed within a shallow ditch system (F.52), of which only the southern side survived later truncation (Figs. 7.7, 7.15, 7.16 & 7.18). There it continued for a distance of 34.5 m running straight for 22 m, and it is because its line is aligned with the first shrine that they are, therefore, interpreted as being contemporary. 0.90–1.65 m across and 0.20–0.40 m deep, it had a broad ‘U’-shape profile with splaying sides; the base was flat or just slightly concave, 0.50–1.00 m across. Generally, this feature was broadest and deepest to the east (adjacent F.93 and F.69). West of this point, immediately before the junction of F.52 with F.53, this ditch again became narrow and shallow, and consisted of little more than a trough. F.52 actually appeared to cut the primary fills of the north–south ditch F.53. While this might indicate that the primary (Roman) enclosure of the mound/shrine slightly post-dated the construction of the ditched ‘Avenue’, by their shared scale and spatial relationship (right-angle alignment), these ditch features are interpreted as being broadly contemporary. The primary fill of F.52 was a grey sandy loam (weathered buried soil), with the upper two thirds of its profile were filled with dark brown-black peat. Within the matrix of the peat deposits in F.52 pebble density varied, but was generally high or frequent at its sides. Certainly it was evident that the F.61 bank deposits had slipped into the ditch from its north side and it is possible that little care was given to keeping F.51 (Phase 2) upcast from entering into the primary ditches.

Along the southern exterior of F.52 was found a slight upcast deposit (F.67), which only survived some 0.10 m high and was 0.60–1.60 m wide (average 1 m: Fig. 7.7). Composed of upcast grey-brown loam and pebbles, this had also slipped down into F.52 and F.93 ([735]). The line of the F.67 upcast bank

Figure 7.12. HAD III: detail of votive deposits. A) F.73, intercut sheep carcasses with accompanying pot deposits in northwest corner of compound; B) F.71, pig burial; C) [1008] central sheep burial within Shrine 1 floor area.
was later followed by F.61 in the west, and in the east it conjoined with the upcast on the west side of F.53 which actually appeared partially to seal the right-angle gully (F.93).

Traces of a shallow and apparently primary enclosure ditch system (a truncated 'step') were found to survive locally on the sides of the main Phase 2 enclosure ditch (F.51). This is interpreted as reflecting the fact the shrine compound may have been completely enclosed by the F.52 ditch in its primary phase. Its truncated profile was most apparent in the southwest and northeastern corners of the enclosure system. In the latter instance this primary profile survived over a length of 1.40 m where it was 0.80+ m wide and 0.25 m deep. In the base of this ditch were found two circular post-cuts: [1011] (0.23 m diameter, 0.27 m deep) and [1013] (0.28 x 0.46 m, 0.23 m deep), which appear to have fulfilled some manner of marker function rather than being of a structural attribution per se. The specific demarcation of the corner by posts was repeated in Phase 2 when a substantial post-hole ([737]) was found in the base of main secondary enclosure ditch F.51.

Apart from the discrete southern length of F.52, the truncation of the primary enclosure ditch by secondary recutting means that little can be said concerning the plan and orientation of the primary enclosure system. Given this, and our limited definition of its line, obviously its circuit could have been interrupted at a number of points. The most likely candidate for another point of entry is along the middle eastern side. Corresponding to where a tongue from the [695] gravels approaches the main ditch boundary (and a marked reduction in the scale of the exterior bank), this would open onto the area of the HAD IV-sealed gravels spreads and correlate to Bromwich's notation of a 'gate'.

The main enclosure (Phase 2)
The main event marking this phase was a major deepening of the primary enclosure ditch system by ditch F.51 (Figs. 7.7, 7.16, 7.17 & 7.18). Of sub-square plan, its uninterrupted circuit enclosed both the barrow (cutting through its surrounding ditch on the northern and western sides) and the primary shrine. While it is argued that F.51 represents a major recutting of the previous F.52 system (whose shallow profile only survived complete truncation in the northeast and southwest corners), along its southern side the later ditch actually lay 1.5–3.0 m north of F.52 and the main alignment of its east–west sides diverged by approximately 5° (west-over-north) from the Phase 1 system. Consequently, the orientation of the F.51 compound was slightly skewed in relationship to the primary shrine structure (though it was still situated so as to be roughly centred between its east/west sides, and was located one third of the way 'up' along the north/south axis). This enclosure was actually of 'parallelogram' plan; its eastern and western sides being parallel whereas the northern and southern diverged. This irregular configuration was produced by the differential lengths of its sides; the southern and western sides were 36 m long, the eastern 40 m and the northern 34.5 m. Enclosing an area
of approximately 1190 sq. m, none of its corners were laid out as an exact right-angle and all were broadly rounded. The top of this ditch was 2.10–2.65 m across (average 2.30–2.50 m) and it was 0.75–1.05 m deep (average 0.90–0.95 m). Generally, F.51 had a broad ‘U’-shaped profile, with a flat to slightly concave base 0.50–0.90 m across (0.60–0.80 m ave.). However, the many slight irregularities and steps in its profile suggest that it had been frequently recut and cleaned out. In fact, a shallow gully that was found along the base of its southern side (5–10 cm deep; 0.25–0.55 m wide) could indicate that it originally had a ‘V’-shaped profile which was only later distorted by ditch maintenance. That this ditch was shallowest in the middle of its northern side and in its southeastern corner (adjacent to F.68 and beside a terminal-suggestive enlargement within its circuit) could suggest the location of some manner of bridging structures providing access across its line and which impeded cleaning-out beneath them.

Flanking the interior edge of ditch F.51 (and without any apparent formal berm as such) was an upcast bank (F.50) which evidently derived from the main enclosure ditch (Figs. 7.7 & 7.18). 5–15 cm thick and 0.75–3.50 m wide (average width 2 m), this was composed of a 2.5 cm thick skim of orange sandy gravels which overlay redeposited sandy grey-brown loam (buried soils) with extensive iron pan mottles and white marl flecking. No formal revetment system (turf or timber) was recognized in this upcast, which was continuous except along the middle of the northern side where there was an 8-m break or interruption of its line (see below).

A somewhat less substantial and irregular bank (F.61) was situated on the exterior side of the main ditch system (Fig. 7.7). 1.10–2.90 m wide and, at the most, only 0.10 m deep, at some points it appeared to be little more than a ‘ghost’ or ‘trace’ in terms of its ephemeral survival. Generally, it was composed of grey-brown sandy clay loam mixed with gravels, though it locally included spreads of orange sandy gravels. Given the more mixed character of this outer bank, it can be argued that it was largely produced through recutting or cleaning out of the F.51.
Figure 7.16. HAD III: sections (see Fig. 7.7 for location).
Figure 7.17. HAD III: sections (see Fig. 7.7 for location).
Figure 7.18. The Main Shrine Phasing Sequence. Shown in relationship to HAD IV, the upper figure represents the primary phase of shrine construction. Approached by the southeastern trackway (bounded by F.53 & F.54) and through the 'Avenue's' post settings, it is presumed that ditch F.53 (only discretely occurring along the southern exterior of the
The Shrine Complex: Situating Ritual (HAD III)

ditch system rather than its primary cutting. It could, however, also include upcast derived from the F.52 ditch system (Phase 1), for in the southwest corner the latter’s upcast bank (F.67) and F.61 were found to be continuous. Unlike at the junction of F.51 and F.54, where the upcast from the main secondary ditch appeared to have been spread across the northernmost base of the latter, F.61 did not apparently seal the earlier F.52 ditch.

The primary fills of the main F.51 enclosure ditch were largely composed of slipped and weathered sandy loam buried soils mixed with lenses of fine gravels and sand (c. 0.10–0.15 m thick in total). These primary deposits were in turn overlain by 0.15–0.40 m of dark brown-black organic peat and/or mud, the lower 0.10–0.25 m of which had a varying, but generally high, ratio of gravel pebbles clearly derived from its flanking banks. These same peat/mud deposits also sealed the primary fills of F.52, F.53 and F.54, suggesting that these Phase 1 ditches were kept open throughout the second phase or at least had not been backfilled. Clearly, it was in response to the onset of the wet environmental conditions (which these peats attest to) that the shrine enclosure system was so substantially deepened. Cut into the southeast corner of the F.50 bank was a shallow sub-square feature, F.71 (0.12 m deep; 0.42 m across: Fig. 7.12:B). Of obvious votive significance, a complete, though only partially articulated, pig/boar skeleton had been placed within it; it was subsequently backfilled with rusty red-brown sands.

While this phase of shrine-related activity is predominantly defined by the recutting of its ditch system, this by no means implies that the octagonal shrine (1) had fallen into disuse, but simply that there is no way to correlate directly the sequence of votive deposition to the site’s ditch phases. It is therefore quite likely that some of the votive deposits described in the first phase (F.57 and F.73 sequences) may actually have been deposited during this secondary, and even the subsequent, phase of usage (see below). Similarly,

later enclosure) continued around all four sides to conjoin with ditch F.54 in the southeastern corner. This projection is speculative. Even if doing so, its circuit could have been interrupted at various points, especially along the eastern side. There, a projection of the patchy gravel spreads along the enclosure interior (presumed to relate to the metalling sealing the HAD IV enclosure) corresponds with a marked reduction within the exterior upcast gravels and suggests another point of access (hatched length); this could correlate with Bromwich’s notation of a ‘gate’ on this side.

On the northern side of the compound ‘BD’ indicates the line of the ditch Bromwich sketched in that location (rectified according to his measurements). Evidently ploughed-out by 1983, it is presumed to have bounded the western projection of the trackway recovered during the HAD II excavations (see Chapter 8 below). Although not shown on the later phase plans, this track (and the HAD IV metalling) would have been maintained throughout the lifetime of the shrine complex.

The situation of Structure F.93 is awkward in relationship to ditches F.53 and F.54 and it is difficult to seem them as contemporary. Other possibilities arise; it may either pre-date the shrine phase (i.e. be of Iron Age attribution; see Fig. 7.5) or have been an ancillary structure of the early shrine complex that was not then ditch enclosed.

Set within the southern interior of the compound, the primary shrine would have stood at this time (its orientation being more true to the line of ditch F.52 than the southern side of the subsequently deepened compound). It is presumed that the deposition of the pot-accompanied sheep carcasses in the northwestern corner (F.73) would then be initiated; the dashed box at this point represents the square configuration within the subsequent Phase 2 upcast gravel, possibly an altar base.

Phase 2 sees the digging of the main enclosure system around the compound, presumably to enlarge the western, north and eastern sides of the earlier Phase 1 compound (F.52). As discussed, it is presumed through the configuration of the F.51 ditch along the eastern end of its southern side (and finds distributions) that access was then still from the ‘Avenue’ approach and that ditches F.53 & F.54 retained their function. This could have been achieved by one of two ways. Either F.51 (from what appears to possibly be an enlarged terminal just west of F.53) was interrupted to the southeastern corner (shown in hatched line) or, with its circuit complete/unbroken, it had a planked crossing at this point. In the case of the latter, the western enlargement of F.51 would therefore represent the result of recutting beside this bridging point. (Drawing on the correspondence that this enlargement in the main enclosure correlates with the change of alignment of the Phase 1 boundary F.52, more complicated ditch arrangements would be envisaged. However, it seems most unlikely that ditches F.51 & F.52 co-existed.) Dug into the F.51 upcast, while the boar burial F.71 set in the southeastern corner of the enclosure is presumed to relate to this phase, it could conceivably be later.

Phase 3 sees the demolition of the primary shrine (with its floor area still a locale of placed deposition) and the establishment of the timber shrines. The southern access was cut off by the surrounding timber range and the compound seems to have then been gained from the north (and possibly also still the eastern side); see Figure 7.19 for further Phase 3 timber settings.

345
little direct structural activity can be attributed to the octagonal shrine during this secondary phase with the exception of an alignment of four post-holes which ran for 3.80 m between the ‘back’ southern side of the shrine south to (and across) the F.50 upcast bank. These circular cuts ([994], [996], [1026] & [1027]), c. 0.20–0.30 m in diameter and 0.06–0.14 m deep, were filled with grey sandy loam and set 1.00–1.40 m apart. The secondary status of this post-line is determined by the fact that [994] cut through the F.59 footings and [1026] each cut the F.50 upcast bank. That this post alignment ran south from the shrine would suggest that the building was then still standing and, therefore, these were unlikely to have been a Phase 3 phenomenon. The structural or functional significance of this post-line is problematic and it can only be imagined that it supported some manner of fence set to constrain movement around the back of the shrine. Two further shallow post-holes/hollows also lay in this immediate area behind the shrine ([800], [812]–[818]). Whilst possibly attributable to this phase, they were without obvious structural significance (see Phase 3, below).

There is evidence to suggest the temporary abandonment of the primary shrine was due to high water levels and/or seasonal flooding which resulted in the deposition of extensive black alluvial mud deposits. These peaty deposits not only partially filled the enclosure ditch systems but also blanketed the lower flanks of the barrow mound and F.50 (surrounding the primary shrine building), and lay as patchy spreads/hollows on the upper crest of the mound. It is, however, possible that the shrine was then still visited, as locally dense and apparently ‘structured’ bone deposits were found in this peaty horizon. For example, a cluster of horse or cattle mandibles was found in the peat in the northwestern corner of the enclosure compound ([655]). Similarly, a concentration of sheep bones occurred in the peat above the gravel spread in the middle of the eastern side of the compound ([698]). These latter deposits also included a large fragment of charred and dressed timber, and scattered around the shrine compound were peat-filled hollows which included relatively high densities of building material, especially roof tiles (e.g. F.55; Bromwich also collected tiles from the enclosure). The densest artefact concentration, however, lay within the peats in the southern third of the compound ([558], [692], [788]), where the finds density was so great that a metre grid had to be strung out to facilitate collection. By far the greatest density of artefacts was found on the east side of the shrine, from where these distributions continued into the main enclosure ditch fills and into the peat fills of the F.52 and F.53 ditch junction. This artefact spread included quantities of large fragments of pot, bone, metalwork (coins, rod, chain, etc.), and also some small pieces of dressed stone and charred timber. The size of the less robust artefact categories would indicate that these finds-rich horizons had not been subject to extensive trampling.

It is certainly clear that the first shrine was dismantled at the end of this phase and was not standing in Phase 3. This is a crucial point, for any temporary abandonment of the site or interruption of ritual practice owing to high water levels would not necessarily have dictated the destruction of the shrine building. It could, of course, have been dismantled or robbed for its building materials, but if largely constructed of wattle and daub, then only its frame timbers and the plinth footing (and possibly its roof tiles) would have been of re-usable value.

It is equally as difficult to account for the destruction of the primary shrine as it is to evaluate the occurrence of dumped deposits on its eastern side. This raises the question of whether the two are related, for certainly the artefact spreads did include some element of demolition/destruction debris. Yet to postulate their direct interrelationship would imply that the majority of the finds within those deposits had somehow been housed within the shrine and were only spread upon its destruction. This seems most unlikely and, as will be discussed below, these deposits must largely reflect middening of material that had spread into the hollow flanking the shrine. Whilst having destruction/demolition debris incorporated into it, its contents reflect accumulation over a considerable span and, in fact, question which phase of activity it was associated with: the later usage of the first shrine (Phase 2) and/or its timber successor (Phase 3).

The post settings (Phase 3)
It was upon the cessation of flooding and when the ground-surface deposits of alluvial mud/peat had dried out within the interior of the enclosure that the final shrine was rebuilt. Because of recent drainage and consequential shrinkage it is difficult to estimate to what extent the profiles of Phase 1 and 2 ditch systems were open and potentially influenced the layout of the secondary shrine complex. However, as far as it is possible to extrapolate, the main enclosure ditch could have been open to a depth of 0.50–0.60 m and would certainly have still been visible.

Situated at the crown of the barrow, the secondary shrine proper consisted of a sub-square post-built structure open on its north side (F.79/Shrine 2: Fig. 7.18). Constructed of 10 posts-(holes) laid out so as there were four uprights on each of its three sides with
In [881] large circular hollow 0.20–0.50 m in diameter (average apart from [670] on the mid eastern side, no such post-holes were on the north and east sides, and it would appear that the partially filled Phase 2 ditch line was still sufficiently open to act as a barrier. If this was the case, then this post range would cover an area of approximately 680 sq. m. It is, of course, possible that along the north and eastern sides of this setting posts had actually been driven into the alluvial peat fills of the main enclosure ditch. If so, it is unlikely that they would have been recovered and it is even possible that the post-hole found in the base of this ditch in the northeast corner was actually part of this range.

The post-holes of the F.91 ‘range’ were substantial, being on average 0.40–0.60 m in diameter and 0.10–0.38 m deep. Generally those on the southern alignment were shallower (average depth 0.15–0.17 m) as opposed to those on the north-south line (average depth 0.20–0.30 m). The interval between them varied from 2.25–3.75 m, with an average distance of c. 3 m. No packing fills were apparent and they were largely filled with the heavy olive brown-yellow alluvial flood clays which eventually marked the final abandonment of this locality (though in a few of the larger post-holes sand lenses and sandy clay silts were found in their lower profiles). This lack of packing fills would suggest that these posts only stood for a relatively brief time and that they were quite large (c. 0.35–0.40 m in diameter). Reminiscent of the ‘Avenue’s’ post settings, there is no evidence that these carried any superstructure and it can only be postulated that they were either free-standing or, at most, supported a fence or hurdle.

It is by their spatial integration that this post range and the main secondary shrine (2) are considered to be contemporary. Not only are the sides of the post-range and the shrine parallel, the latter is axially centred within this larger timber range. The secondary phasing of the square shrine itself is, therefore, based on the stratigraphic relationship of its surrounding post range, as the latter’s post-holes along the southern east–west alignment cut through both the peat layers overlaying the footings of primary shrine and its foundations proper (and also the Phase 2 up-cast bank). It warrants emphasis that the southern line of the post range definitely cut access from the southern approach; there was no integration between it and the earlier ‘Avenue’s’ posts.

As discussed, Bromwich’s notation of gateways across the northern and eastern perimeter of the
shrines compound would obviously be sympathetic with the layout of the post range surrounding the final shrine and the fact that its southern access appears to have then been cut off (and the recovery of third- to fourth-century wares from the Roman surfaces across the HAD IV sub-site on its eastern side). All this suggests a significant re-orientation of access, but which may, of course, have involved no more than the laying of a few planks across its perimeter ditch line, and have left little material trace.

Though, as defined, the F.91 range is the major post setting, by no means is it the only such alignment. There are a number of largely 'unpassable' post-holes and shorter alignments which may represent similar settings or ephemeral structures (Fig. 7.19). Whilst some of these features were quite robust and also filled with the distinctive plastic clays, most were far more irregular and of more spurious attribution. Best described as 'hollows', these were c. 0.20–0.40 m in diameter and 0.10–0.25 m deep, and were filled with dark grey-brown peaty clay loam. Given the character of the fills, most of these would probably have predated the main Shrine 2 complex inasmuch as they had evidently been filled prior to the onslaught of the terminal flooding. The main candidate for another such post configuration would be the northeast-southwest diagonal met by the northern end of the western F.91 axis. This consisted of nine post-holes set at an interval of c. 3 m over a distance of 20 m (see Fig. 7.19, Line B). Although a definite southern end post was not found to this line, a southeast-northwest return alignment was recognized (Line A on Fig. 7.19). Equally, ambiguity exists for the exact configuration of what seems to be an associated central setting. Whilst it may also include a discrete northwest-southeast alignment (Fig. 7.19, Line C), and the southeastern side of this group is unclear, in the main it would seem to define a sub-rectangular setting extending over 9–10 x 6–7 m. This approximately follows the orientation of the diagonal post ranges on its northwestern and southwestern sides. In the same manner as the Shrine 2 ‘square’, this interior setting is probably still another shrine setting, which may have been open to the southeast. It will hereafter be referred to as Shrine 2A (with 'B' denoting the smaller square structure to the south). It is not possible to detail this setting to the same degree, although what is important is the repetition of the late post-built settings and the acknowledgement that others may have gone unrecognized in the south-centre of the compound.

As discussed above, while it is conceivable that this setting was actually of Iron Age date, this is highly tenuous. If, instead, of secondary (Roman) shrine attribution, then by the pattern of the post-ranges and their ‘shrines’ what we might be seeing is a re-establishment of post-alignments and structures probably reflecting

Figure 7.19. HAD III. Phase 3 timber settings: A) all shrine-phase postholes with predominate axes (A–C); B) blackened post-holes showing Shrine 2B' setting.
The Byre of Mayual: a Dinka shrine in the southern Sudan
by A. MAWSON

On a low, sandy ridge some 14 miles northeast of Rumbek, a once-prosperous town in southern Sudan, stands a wet-season cattle camp used by various territorial sections of Agar Dinka. In the centre of this otherwise unexceptional camp, known as Wamyang, is a ceremonial homestead consisting of a large circular, wood-post walled byre (besh) and a house constructed on a platform raised on timber uprights some three metres above the ground. The byre is associated with the Agar manifestation of god (shahic) known as Mayual and the raised house with the divine manifestation Too; the Power of the Land.

The Agar, like other Dinka communities, have a mixed agro-piscatorial-pastoral economy but define themselves through their interest in cattle. Cattle are a core economic resource and a means of mediating and establishing relations between people. The transfer or exchange of cattle, for example in marriage or the resolution of disputes, sets up a complex series of relationships between individuals and agnatically defined descent groups. Cattle are a source of life, in the profound sense, as Agar see it, that cattle (and the needs of cattle) create the community. Because kinship is created and regulated through the exchange of cattle, they are often taken as standing in the place of both people and relationships between people. The sacrifice of cattle is one of the most powerful ways of mediating relations with the divine.

Each territorial community is formed around families noted for their ability to mediate with the divine to provide and release the gift of life (experienced, for example, through the birth of children, vitality and health, the fertility of livestock, the ability to defend pasture, abundance of the rains and a degree of harmony in the community). Not all members of these families have notable religious powers (but all Agar have some). Men of particular religious strength can, to an extent, control their possession and will be recognised as being the masters of the byre. If these men do not bring life, they are interpreted as having lost their powers and lose their standing.

The Agar know innumerable manifestations of god, some widely shared, others important or meaningful only to a few. The manifestations of god known as Mayual images aspects of experience widely shared (and considered important) by various territorial communities of Agar. These communities, by the very nature of life, are in a state of constant change, with different individuals and lineages gaining or losing social and political influence in the face of events and broader forces.

In Agar myth the first master of the byre of Mayual told the community that to receive the gift of life they must build a byre out of people. Each descent group had to provide men to be wall-posts and rafters. The gaining of life therefore involved the sacrifice of themselves. To cut short a long and profound meditation on life, death and power in Agar (see Mawson 1989), eventually the community rejected the tyranny of the master and turned to his son who replaced the byre of people with one built of more conventional materials. The byre of Mayual is thus the community of builders. The byre of myth and the physical byre at Wamyang are condensed images of the moral and political community within which people live.

The byre is rebuilt on an approximately eight-year cycle. The physical process of rebuilding involves making explicit what members of the community (which in 1983 involved seven territorial sections who often shared dry season grazing, with a population of approximately 30,000 people) regard that community as ideally being, morally and politically. Rebuilding, which takes place over a notional eight-day period, enacts the mythological idea of sacrifice of the participants themselves. Particular age and descent groups (and particular territorial communities) provide building materials in place of themselves. The physical act of rebuilding involves representatives from key descent groups actually doing the work.

At the rebuilding I witnessed in 1983, the ceremony started with the sacrifice of a black goat to carry away the "bad things" (je nic) locked in the byre. Each territorial section was allocated part of the byre to dismantle and rebuild. The dismantling was carried out in a frenzy of excitement. The wall posts were removed and a new post trench dug out (literally by hand). The new posts were then placed along the inside of the trench and old posts were trimmed of termite damage and placed round them on the outside. This left the completed byre wall looking in the same weathered condition as it had before the dismantling.

In the days that followed a white ox was sacrificed by being trampled to death after invocations by around 30 of the most senior masters of the fishing spear present. Its hide was cut into strips to bind the rafters, the bamboo apex of the roof and the thatch. Several weeks after the byre was rebuilt religious leaders and elders from another territorial section closed its door. This involved an elder using a symbolic bow and arrow to fire the "bad things" back into the byre, which was then sealed with the hide of another sacrificed ox.

The master of the byre coordinates the rebuilding and, through it, affirms a powerful political-religious role for himself in the community. However, leadership in Agar, including religious leadership, is not centralized. The process of rebuilding involves members of the community negotiating through what they believe their community to be; and, of course, agreeing to take part. Each rebuilding therefore provides an opportunity for people to reassert their community as open and for negotiation to take place. Every rebuilding is "delayed". Each is a moment in which the community of rebuilders is reinvented in 1983 fear of war in southern Sudan was a key issue.

Figure 7.20. Left, the elders preparing to sacrifice the ox, with the construction of the byre clearly visible behind; right, the roof apex being man-handled into position.
a cycle of ritual activity, and which were perhaps erected during specific festivals. What appears to be conspicuously absent in this late phase of the shrine are the sequences of votive deposits which characterized its primary phases. Rather, 'late' ritual activity may have been redirected to the very act of temporary or short-lived shrine construction itself. However, it can be argued that at least some of the votive deposits within the floor of the primary shrine may actually date to this terminal usage. This will be more fully discussed in the chapter's concluding discussion.

Building materials and reconstruction

How is the shrine to be reconstructed given its ephemeral preservation? Much of the material would have broken down through exposure and weathering (e.g. daub and mortar/plaster) and other categories that are otherwise only represented by a few pieces would have been subject to robbing and re-use upon abandonment (e.g. tile and stone).

Tile

146 pieces (5.1 kg) of tile were recovered (Bromwich also collected tiles; these have not been analyzed). All had been broken in antiquity, and the largest fragment consisted of approximately a quarter of an imbræx roof tile; their size ratios were (longest dimension):

<table>
<thead>
<tr>
<th>Size Range</th>
<th>Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 50 mm</td>
<td>59 (42.7%)</td>
</tr>
<tr>
<td>50–99 mm</td>
<td>73 (47.1%)</td>
</tr>
<tr>
<td>> 99 mm</td>
<td>14 (10.1%)</td>
</tr>
</tbody>
</table>

34 fragments were definitely identifiable as imbræx tile. In no instance did a full curved width survive, though a profile of 130 mm can be estimated. All the surviving edges were found to carry a ragged lip (1–4 mm high) which has been produced through the wiping of their faces. Their fabric was of an evenly fired, 'standard' mid to dark orange buff clay with sand and occasional fine grit, which had been liberally tempered with organic matter (largely straw). The imbræx pieces vary in thickness from 9–22 mm and are 15 mm thick on average; at their base edges they generally broaden to 17–20 mm (Fig. 7.22:1).

Only six fragments of flat and/or tegula flanged tile are identifiable. 20–28 mm thick (25 mm average), their fabric is distinctly different from the imbræx: mid to dark buff clay mixed with relatively little sand and with a more minor organic component (possibly accidental inclusion); the interior/core is of mid to dark grey hue (i.e. reduced).

The fabric of the respective tile types is mutually exclusive according to their form. The unidentifiable tile pieces all share the same fabric as that of the imbræx fragments and, therefore, it is most likely that they can all be assigned to that type. This would thereby imply that 95 per cent of the recovered tiles consist of imbræx. The low number of complementary tegula pieces may reflect that these had been more thoroughly robbed, re-used and transported off the site. Though the quantity of roof tiles is not great, the frequency of imbræx pieces suggests that the Phase 1 shrine had been tile roofed (Fig. 7.22:2).

Building stone

Three large pieces of yellow/white great oolite, originating from the Soke of Peterborough (D. Hall, pers. comm.) were recovered:

1) <3945> [566]: A roughly dressed block (0.275–0.20 x 0.15–0.205 x 0.095 m); see Figure 7.22.4, with bevelled face and splaying sides.
2) <4035> [898]: A roughly dressed and damaged block (0.215–0.19 x 0.15 x 0.03–0.06 m) with one dressed side surviving, slight bevelled face; as 1 but damaged.
3) <4518> [566]: A large slab (0.25 x 0.195 x 0.035–0.07 m); part of one side roughly dressed, otherwise no surfaces survived.

No mortar adhered to any of these. Nevertheless, it cannot be doubted that Stones 1 and 2 were a part of an edge-bevelled plinth. The splaying outer face of these stones could suggest that this plinth surrounded a (sub)-circular building (Fig. 7.22.5). The very damaged slab of limestone (Stone 3) was also probably part of this footing.

Nails

91 identifiable iron nail fragments were recovered; many were very small and only five were complete. On the basis of 'head count' alone, the assemblage
represents a minimum population of 50 nails (Fig. 7.22:3). Given their fragmentary state and extensive corrosion, a detailed form typology was not viable (i.e. as Cleere 1958); a much more broadly-based scheme was therefore employed:

Type
1. Small tack-like nails with large-developed heads;
2. Small tack-like nails with small/undeveloped heads (i.e., one side of head flush/flat with shaft);
3. Medium nails with large/developed head;
4. Medium nails with small/undeveloped heads (as 2);
5. Large spikes.

Employing this classification the 'headed' nails from the shrine divide as in Table 1. The results can be more generally grouped according to size:
- Small 20% (1/2);
- Indeterminate small/medium 10% (1/3);
- Medium 56% (3/4); and
- Large 14% (5).

The fragmentary nature of the assemblage implies that the determination of form has, to some degree, been based on a subjective assessment of the head/shaft ratio and by a rough estimation of the original length of the shaft (i.e., tapering). It was found that the average (greatest) head dimension of small and medium nails did not appreciably differ (12 and 12.5 mm respectively), whereas the head size of Type 5 nails was substantially greater (21.5 mm average). It was, rather, the shaft size which distinguished the small and medium classes. Those complete small nails were 19 mm and 23 mm long (Types 1 and 2), and generally their length would seem to have been less than c. 20 mm, whereas complete medium-sized nails (Types 3 and 4) were 50 and 40 mm in length (one 'headed' medium-sized shaft was 60+ mm long). The longest nail had a shaft 105 mm in length and a number would have been at least 120–140 mm long.

Generally three basic types of nail are apparent in the assemblage: small tack-like nails (Types 1 and 2) for minor fittings (including non-building construction, i.e., furniture); general purpose nails (Types 3 and 4; for fittings, tile hanging, less robust timber fastening) broadly comparable with Cleere's Type III (1958); and larger spikes that would probably have...
been used to fasten structural timbers (Type 5; approximating Cleere Type 1).

Mortar

Only a small collection of mortar fragments was retrieved from the site. The most substantial pieces came from [881] and [696], post-holes along the southern side of the timber shrine (F79). In one the mortar fragments had been re-used as packing ([881]), while in the other it appeared to have been poured 'wet' into the hole ([696]). Table 7.2 summarizes the mortar fragments identified, including a basic division into four types based on texture and inclusions.

The different types are characterized as follows:

Type 1: Hard white sandy texture, no inclusions;

Type 2: Moderately hard, off-white sandy vesicular texture, no inclusions (degraded out?);

Type 3: Hard yellow/white with frequent (30%) fine-medium-sized pebbles;

Type 4: Off-white to grey with moderate (10%) fine-medium-sized pebbles, frequent flecks of charcoal and occasional fine flecks of fired clay.

These differences evidently relate to construction episodes/ phases of the shrine and this pattern clearly emerges when we break the quantities of each type out by phase as in Figure 7.21.

Daub

Remarkably little daub was recovered:

1) <6349> [721]: A medium-sized lump (25x30x25 mm; 7.5 g) of mid-dark brown fabric with extensive organic inclusions, very soft and crumbly.

2) <3879> [606]: Eleven small and medium fragments (18.1 g) of relatively hard mid-yellow-brown fabric with organic temper; with one smoothed/wiped face.

3) <4722> [692]: A small fragment (1.3 g) in a sandy fabric; somewhat mortar-like.

Discussion

While some building stone was found on the site, it did not occur in such quantities to suggest that this was a stone structure per se. However, the two shaped limestone blocks that were recovered probably related to a one course high off-set plinth that would have bedded upon the gravel footing (Fig. 7.22:5). This probably supported wattle and daub walls supported by stud posts, whose attachment may have been by the larger nails (though dowels could also have been employed).

While there is no direct evidence of a mortar floor, that mortar residue was found would at least suggest that its walls were mortar- or plaster-coated. Though insufficient internal posts were present to suggest any manner of internal support, a four-post doorway setting was, however, distinguished. That tile fragments were recovered (along with those retrieved by Bromwich) suggests the character of its roofing; this interpretation would be further supported by the high ratio of imbrex fragments and the near-complete examples of this type (Fig. 7.22:1).

Artefact distributions and depositional context

In total, 2639 sherds of Romano-British pottery (37.7 kg) and 32,933 animal bones are attributable to the site's shrine usage. Although there is nothing particularly remarkable in these quantities themselves, the amount of bone in comparison to the pottery is very high and occurs in a ratio of 12.5:1 (involving much higher numbers, more than 232,000 bones, from Uley the comparable ratio is 3.5:1: Woodward & Leach 1993). In contrast, the large-scale excavations at Stonea only produced some 19,000 animal bones (all sub-sites and phases: Jackson & Potter 1996, 587) and, similarly, the 'tonne' of pottery recovered from the Chelmsford Temple (Site K) emphasizes just how little bone was associated with it: 3192 pieces (Wickenden 1992). Although given differences in excavation techniques (and reportage) no manner of absolute measure or ratio can be postulated, what this attests to is mass deposition (and arguably consumption) of animal remains at the Delphi shrine and this must be reflective of the practices it hosted (e.g. feasting).
Although for a temple/shrine the overall quantity of artefacts recovered is relatively modest, its densities were, at least locally, considerable given the restricted distribution of 'highs' throughout the southeastern quarter of the compound (Fig. 7.24). Most of the material lay within the hollow between Shrine 1 and the eastern gravel spread, from where it extended south to the adjacent lengths of the main enclosure and the northern end of the 'Avenue's' ditches (Fig. 7.23). It generally occurred with peaty spreads/fills in which there was no evidence of in situ accumulation (i.e. weathering lenses). Equally, given the quantities involved, it seems most unlikely that this could only represent refuse from only a few festival episodes. Instead, the densities probably attest to longer-term middening in heaps which were subsequently spread throughout these areas, perhaps with the aim of levelling up the reduced shrine-side hollow.

In the following analysis ditch segment artefact densities have been calculated on the basis of metre lengths; otherwise, no attempt has been made to factor density by feature size/depth.

Bone

Generally ranging from 0-609 pieces per metre-square (mean of 17), the spread of bone was consistent throughout the southeastern quarter of the compound and along its interior eastern margin (Fig. 7.24). There was an east-of-shrine (1) high where core values generally occurred of 100-200 pieces per square and in which there were extreme occurrences of 300-600 per metre. These high values also extended into the adjacent length of the compound and western 'Avenue'-approach ditch with densities of 133 pieces per metre length. Otherwise, higher than average values consistently occurred along the southern side of the primary shrine and in the southeastern and northeastern corners of the enclosure. In the latter, values of c. 20–90 pieces per square occurred over c. 20 sq. m; the more localized 'high' in the opposite southwestern corner was much less substantial with values of 10–24 pieces occurring across some 5 sq. m. Although only average values occurred within the northwestern corner of the enclosure, this does not include the series of sheep carcasses placed there. If admitting these, then each corner of the enclosure was marked by higher than average densities.

Pottery

(with G. Lucas)

Ranging from 0–40 pieces per ground surface metre-square (3 mean), the main area of consistently high density was again in the hollow between the primary shrine and the eastern gravel spread (Fig. 7.24). There, extending over some 45 sq. m, the densities were...
to the midden spread. Despite the fact that ‘muddy’ deposits extended along the interior edge of the east side of the compound (where locally there were concentrations of pottery and bone), the only small find from this area was a bronze brooch (<4877>) in the northeastern corner. Of course, only a portion of the metalwork is attributed a distinct finds spot as much of it was recovered from metal detecting the ploughsoil spoil heaps.

Depositional context
The evidence of middening and the subsequent spread of these deposits obviously restricts the study of direct depositional associations. The vast majority of the material has been effectively jumbled together and the immediate context of their primary deposition lost. Yet, aside from the particular association of jars with sheep carcases in the northwest corner and elsewhere the occurrence of sheep with coins, there is little evidence of the placement of material culture 'packages'. Otherwise, the animal burials are unaccompanied and, as will be further discussed below, even the jars and coins set with the sheep do not seem to constitute any kind of structured 'message' (e.g. animal+coin/jar = ?), but rather were taken payments for the intercession of the gods with the sheep as their sacrificed 'messengers'.

Although most of the site's faunal assemblage probably also derives from sacrifice (and feasting), that so many carcases were 'grounded' (that is, set in pits) is relevant given that other categories of material were evidently not treated in this manner. Of course, it could be argued that this was pragmatically determined, with the carcases buried so to mask the rotting of their flesh. Yet it seems clear from the sheer number of animals involved that were not so treated, that the compound did see much decay and would have been quite rank. This raises the issue of at what point in the act of sacrifice were the animals effectively delivered to the gods — at the moment of killing or upon their burial. Alternatively, these different deposits might reflect quite different ritual acts, perhaps with burial relating to rites of intercession and the slaughter of the animal alone (without burial) possibly only intended for soothsaying (i.e. reading of the entrails).

Regardless of the interpretation of the specific rites, that other items of material culture were not otherwise buried reflects upon the character of their ‘loss’ and the nature of the assemblage as a whole. The occurrence of pottery can obviously be accounted for through breakage. The issue, of course, is to what extent this was intentional and whether once goods had entered the shrine precinct they could be removed. Below, Lucas discusses the particular character of the site's small finds assemblages. At a general level it is here pertinent to consider the role of the coins, jewellery and other objects, and whether their occurrence is attributable to 'loss'? For while the actual numbers recovered are not so great that they would distinguish a settlement site of comparable size and duration, the crucial difference is the presumed brevity of the shrine's actual usage. Admittedly this has little concordance in the site's stratigraphic sequence (apart from the rhythm of placed deposits; see below). Nevertheless, it is reasonable to speculate that the site may only have been used for a few days a year: the equivalent perhaps of 2-4 years full-time 'occupancy' over the two centuries of its actual span. Given this reckoning, the 'loss rate' for such items is high and most of the material was probably taken payments for the rituals performed.

Though given that by the nature of the site's sequence there is little potential to analyze any direct depositional context, what is essential is that its assemblages be approached in a broadly contextual manner. Although unrelated in the ground, it is imperative, for example, to see the occurrence of knives, shears and animals carcases as collectively reflecting acts of sacrifice, and similarly to distinguish finds related to cult/priestly regalia (Bromwich's rod and baton end) and the shrine's 'equipment' (e.g. the balance arm). This approach underlies, and will be developed within, the analyses which follow.

Small finds

Bromwich's finds
Corresponding with Bromwich's notebook entries, aside from pottery and tile the Cambridge University Museum of Archaeology & Anthropology holds the following material collected by him from the site (all Cat. no. Z.25821: Fig. 7.29):

1) Copper alloy bell, c. 4 cm diameter and 3.1 cm high.
2) Iron clanger; accompanying ‘1’.
3) Iron shears 12.5 cm long (43.4 g).
4) Copper alloy pin with circular head has traces of iron accretion adhering to dark green patina; bent in antiquity with the tip broken, 16.5 cm long (10.7 g).
5) Hollow cast ribbed copper alloy baton handle, 7.2 cm long. Generally 1.5 cm in diameter with the interior hollow to take a wooden shaft (interior diameter 1.2 cm); the terminal head has an attachment hole through its top.
6) Copper alloy rod 15.7 cm in length with an average diameter of 8.4 mm (69.6 g); locally still carries a dark green patina. Its splayed end has obviously been broken at the point of attachment, probably to some manner of disc; the poppy-head style terminal is channel decorated. Fitting along its length, at two points the shaft has a series of regularly incised grooves.
might note the hound and hare knife clasp as dogs are strongly associated with healing cults and numerous canine figurines and images were recovered at Lydney. Although not numerous, dogs were present among the faunal remains at Haddenham. The significance of items of jewellery to healing is claimed to lie in the fact that they belonged to and had contact with the body and thus pass on to the deity something of their individuality or person (Webster 1986).

Part of the patterning may also be chronological. At Uley, which spanned the Roman period, it was found that different items predominated at different periods: from the first century it was mostly weaponry and tools; from the second to fourth centuries, miniature vessels, coins, pins, spoons and toilet articles; and from the fourth century, votive objects (figurines and caducei, miniature weapons, plaques), rings, beads, bracelets and finger rings. This was interpreted as a shift from a martial to a Mercury cult. More generally it was observed that there was a trend towards miniaturization and diversification of objects from the fourth century. The lack of any votive objects from Haddenham, even if only as a small proportion of finds, might be as much a reflection of the date of abandonment of the shrine as its cultic associations.

In this context, the role of the coins on site must be considered. If we compare the ratios of items of jewellery to number of coins from Haddenham against Uley (Phase 4), it is quite clear that coins at Uley vastly outnumber items of jewellery where they occur in a ratio of 20:1 (6 per cent); at Haddenham jewellery is much more relatively common (5:1; 20 per cent), something also observed at Great Dunmow (23 per cent). It supports the notion of different cult assemblages, the high number of coins at Uley being associated with Mercury and trade while the high quantity of jewellery at Haddenham was linked to healing. Indeed, rather than acting as a currency, the coins on such sites may have had token value simply as precious objects, particularly on shrine sites such as Haddenham. This interpretation is possibly strengthened by comparing coin loss ratios over time with other sites (see Reece above).

If Haddenham was a shrine dedicated to healing and fertility cults, it raises questions over the role of such a shrine in the wider landscape context. The closest comparable shrine site may be at Willingham where a hoard of bronzes was found in 1857 (Hall 1996, 144; Evans 1984; Bromwich 1970, 209–10). The site has not been excavated and is only attributed on the basis of aerial photographs of a square enclosure (and the hoard), but dates to the same period as Haddenham (second–third centuries). The main significance of this site is in the hoard of votive objects which, apart from the baton terminal, contrasts quite markedly with the range of objects recovered from Haddenham (the status of this site is further discussed below). The other nearby shrine is at Bullock’s Haste, Cottenham, where a range of personal objects (e.g. two spoons) and jewellery (a pin, six brooches and three bracelets) were recovered before quarrying removed part of the site (see below; Taylor 1985; Bromwich 1970, 213–14). Previous finds from the site include a bust of the Emperor Commodus (AD 180–192; Babington 1883, 82) and among the more recent finds are cult figurines of Mercury and Sol (Taylor 1985, 46–7, figs. 134, 185 & 187).

Both these sites differ from Haddenham in the presence of votive objects and it is possible that they may have had different cult associations relating to trade and Mercury. Certainly they both lie adjacent to the Car Dyke, but on the other hand Haddenham lies alongside the Old West River which the Car Dyke ran into; all were thus along the major waterways through the fen. The principal difference rather seems to be that both the Willingham and Cottenham shrines are sited within a major rural settlement or village whereas Haddenham is strikingly isolated. It may be that this settlement context is the significant aspect in relating the cult associations with the shrine, in that healing/fertility cults were best practised at a distance from settlement.

Animal remains: evidence of animal sacrifice
by M. Beech

A number of questions arise in relation to the shrine’s animal bone assemblage. Is the entire assemblage votive (i.e. relating to sacrifice and subsequent feasting) or does it also relate to settlement activities on the site? How far is it possible to interpret the relationship between placed and non-placed settings? Is there any difference in the kill-off pattern of votive sheep deposits vs. non-placed deposits? Are there any major differences between the deposits in Shrine 1 and Shrine 2? Is there any evidence for continuity in ritual practices on the site? Do the bird and fish remains recovered represent votive deposits, and, finally, how does the Snow’s Farm, Haddenham material compare with other faunal collections excavated from Romano-Celtic shrines and temples?

Definition of votive deposits
It is clearly often difficult to separate symbolic from economic behaviour. Evidence of slaughtered animals can be found in shrines, graves and settlement sites during the period in question. Animals were sometimes eaten or partially eaten, and sometimes whole bodies or parts of bodies were deposited as offerings. As Levitan admitted for the Uley assemblage, ‘... not all the sheep, goat and domestic fowl were necessarily of votive origin’ and ‘... a propor-
tion of the sheep/goat from the site seems likely to have been used for domestic purposes' (Levitan 1993, 259). He decided on account of the numerical dominance of sheep and goat bones at Uley that they must mostly be votive. He treated the other remains present (cattle, pig, horse, dog, red and roe deer) as being non-votive. This seems a reasonable assumption in the case of the goats (as Levitan notes that normal Roman sites might have less than 10 per cent goat rather than the 60+ per cent represented at Uley), but it seems unfair in the case of the other animals. As will be demonstrated below, there are many sites which do appear to have votive deposits composed of these species, particularly in the case of the other major domestic animals. This argument that the animals represented in the special deposits do not match with those relatively proportions on normal settlement sites in the region concerned is another means of comparing assemblages. There is a problem here, though, as if the proportions happen to be similar, does it therefore mean that one assumes the deposits examined are then non-votive?

A perhaps better definition of votive deposits has been offered, suggesting that the results of such activities are ritual because of their repetitive nature, and because there is no 'rational' explanation for such an economic sacrifice by the local community (Green 1992, 101; Wait 1985, 122-53). Thus, the regular occurrence of particular groups of bones or body parts, as well as the spatial patterning of material on a site, might provide a hint of such repetitious ritual behaviour. A problem here is the definition of 'rational' and 'economic worth'. Clearly in different societies and situations these may have different meanings.

The absence of butchery evidence is normally interpreted as implying that such animals were not consumed. The presence of groups of animals which were seemingly interred at the same time is also used to argue for deliberate sacrificial slaughter. The idea of repetition and patterning of data makes this kind of approach more open to scrutiny and testing. It is certainly also worth considering the spatial constructs of the particular building you are dealing with, and the distribution of bone deposits within that space. The ancient Italic Tables of Iguvium (Umbria) allude to rites of passage or gate ceremonies involving the sacrifice of animals (Brunaux 1988, 116-17). Entrances were vulnerable places which had to be protected, so one might expect to find defined deposits adjacent to such locales. Similarly, beneath floors one might find dedicatory or foundation deposits.

So our definition of what is votive or not votive seems to depend upon a number of factors. In summary, these might involve the numerical dominance of a particular species, and repetition in the occurrence of particular body parts and their spatial distribution. During excavation some 'special' (or votive) deposits may be immediately distinguished by the archaeologist, although other deposits may not lend themselves to be so easily recognized. In the case of the Snow's Farm shrine a number of obvious 'special' deposits were identified during excavation, and these will be discussed in further detail below. Material recovered from other general layers were for the most part treated as if they were from regular non-votive deposits. There may, of course, be some votive deposits mixed with such layers. Although this can partly be checked by comparison of abundances and the anatomical distribution of elements, it still remains a problem isolating votive from non-votive deposits. Ritual practices and behaviour in any case involve both domestic and spiritual spheres so creating a fixed barrier between them may be rather artificial.

Methods

An initial study of the animal bones from the site was carried out in the summer of 1987 for a MA dissertation at the Department of Archaeology & Prehistory, University of Sheffield (Beech 1987). This discussed the key groups of material from the faunal assemblage and the major points of interest. Subsequent to this initial report the remainder of the bones were recorded so that the assemblage could be interpreted in its entirety. The publication of a number of other Romano-Celtic shrines (the most important of these being Uley) since the original study meant that it was also necessary to update the comparison of the Snow's Farm shrines with other published faunal assemblages.

The bones were retrieved from the excavation almost entirely by hand. The discovery of animal skeletons and placed deposits during this work however encouraged careful excavation. As a result of this and the site's sieving policies (as outlined above), the recovery of material was generally quite good with smaller-sized elements, as well as small mammal, bird and fish bones, being recovered. The major domestic and wild mammal bones were identified using the comparative collection housed at the Department of Archaeology & Prehistory at the University of Sheffield. The polecat and small mammal bones were identified with the assistance of Terry O'Connor, who at that time was based in the Environmental Archaeology Unit (EAU) at the University of York. The fish bones were identified by Andrew Jones (also then based in the EAU).

Discrimination between sheep and goat was attempted employing the osteological differences
given by Boesneck (1969), although only for the following elements: horncore, skull, distal humerus, proximal radius, distal metacarpal, distal tibia and astragalus. In addition, the method developed by Payne (1985), whereby morphological differences are visible in the lower second and third milk molar teeth, was utilized. Bones that could not be assigned immediately to species level, such as vertebrae and ribs, were assigned to one of the following categories: cattle-size, pig-size or sheep/goat-size.

Quantification of the bones was carried out using a modification of the ‘diagnostic zone’ approach of Watson (1979). A fragment was only counted if it had more than 50 per cent of one of the following zones: horncore (base), cranium (occipital condyle), maxilla and mandible (either two or more teeth/crypts present), loose maxillary and mandibular teeth (only dP4, P4, M1/M2 and M3), scapula (glenoid), humerus and radius (proximal or distal), ulna (proximal), pelvis (acetabulum), femur and tibia (proximal or distal), astragalus, calcaneum (proximal), metacarpal and metatarsal (proximal or distal), 1st, 2nd and 3rd phalanges (proximal). Trunk elements such as vertebrae were counted if more than 50 per cent of the centrum was present, and ribs if the proximal end was present.

Ageing of the major domestic species using epiphyseal fusion data was carried out using Silver (1969). Ovicaprid mandibles and loose mandibular teeth (dP4, P4, M1/M2 and M3) were grouped into the wear stages of Payne (1973), while tooth eruption ages given are those of Simonds (1854). These ages are used rather than those of Silver (1969), as the ages given by Silver have been criticized for relying on derived data from few original sources (Legge & Dorrington 1985). The coding system of Payne (1987) was used for recording the mandibular wear of ovicaprid teeth. In the case of cattle, Halstead’s adaptation of Payne was utilized (Halstead 1985), and for pigs, Grant (1975) as well as Bull & Payne (1982) was employed. Sexing was determined by the presence/absence of canines or their respective crypts in the case of pigs. Ovicaprid pelvises were sexed according to the morphological differences described by Armitage (n.d.).

Butchery marks were identified according to the criteria of Binford (1981) and were divided accordingly into the following categories: chopped, dismembered and filleted. The incidence of burning and carnivore gnawing was also recorded to monitor the overall condition of the assemblage. No detailed recording of pathological specimens was carried out as so few examples were recorded; nor was biometrical analysis undertaken.

The bone data was initially recorded in numerical code format on the mainframe (Prime) computer system available at the University of Sheffield (in 1987). SPSS-X (Statistical Package for the Social Sciences – version X) was initially used to sort the data set with the aid of the crosstabs function to tabulate output, using the SPSS programs written by Glynnis Jones and Paul Halstead (Department of Archaeology & Prehistory, University of Sheffield). All the original data recorded in 1987, plus records from the remainder of the bone assemblage, were converted into a more readily accessible format in the spring of 1999. The digital data archive is currently stored in Microsoft Excel 97 format, copies of it being maintained by the author as well as with the Cambridge Archaeological Unit (Department of Archaeology, University of Cambridge).

Table 7.7. HAD III: quantification of ordinary (non-votive) vs. ‘special’ (votive) deposits.

<table>
<thead>
<tr>
<th></th>
<th>Phase 1</th>
<th>Phase 1/2</th>
<th>Phase 3</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Phase 3</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ordinary</td>
<td>Special</td>
<td>Ordinary</td>
<td>Ordinary</td>
<td>Special</td>
<td>Ordinary</td>
<td>Special</td>
<td></td>
</tr>
<tr>
<td>Horse</td>
<td>2</td>
<td>29</td>
<td>29</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Cattle</td>
<td>34</td>
<td>75</td>
<td>154</td>
<td>152</td>
<td>13</td>
<td>56</td>
<td>464</td>
<td></td>
</tr>
<tr>
<td>Pig</td>
<td>150</td>
<td>16</td>
<td>1</td>
<td>2</td>
<td>810</td>
<td>31</td>
<td>24</td>
<td>383</td>
</tr>
<tr>
<td>Sheep/Goat</td>
<td>642</td>
<td>148</td>
<td>114</td>
<td>7</td>
<td>2319</td>
<td>88</td>
<td>110</td>
<td>962</td>
</tr>
<tr>
<td>Sheep</td>
<td>26</td>
<td>83</td>
<td>398</td>
<td>135</td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td>Goat</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dog</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Cat</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Deer</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mole</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cattle/Goat</td>
<td>26</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Pig/Red-Fallow deer</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dog/Sheep/Goat/Red deer</td>
<td>212</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>1094</td>
<td>342</td>
<td>526</td>
<td>4527</td>
<td>298</td>
<td>199</td>
<td>4</td>
<td>1747</td>
</tr>
</tbody>
</table>
Chapter 7

Results
A total of 8748 diagnostic mammal bone fragments were recorded out of the 32,933 animal bone fragments recovered from the site. This overall total also included 367 small mammal bones, 2593 bird bones, and 145 fish bones. These are discussed in further detail below.

Quantitative analysis of the larger mammal bones which could be identified to species level (Table 7.7) revealed that ovicaprid remains were by far the most common (72% of all identified fragments), followed by pig (20%), cattle (7%), horse, dog, cat, red deer and polecat (all <1%). Out of the 688 bones which could be specifically identified as belonging to sheep or goat, 99% (n = 685) belonged to sheep. Only three specimens could definitively be assigned to goat. These were a loose mandibular third milk molar tooth (dP4) in Phase 2, in a layer associated with the recutting of the primary enclosure ditch to make the main sub-square enclosure. The other goat remains were a loose mandibular third milk molar tooth (dP4) and a complete adult fused radius in [558], a general layer at the interior of E.50. It seems likely that the majority of the ovicaprids were sheep rather than goat, in contrast to the predominance of goats at Uley (Levitan 1993). Henceforth in this report the term 'sheep' shall be used broadly to describe the ovicaprid remains.

A total of 16% of the bones identified to species were in the form of special (votive) deposits (i.e. whole and partial bodies), all of which came from either on or below the floor level of the shrines or from pits within the shrine compound (Table 7.7). These were almost all composed of sheep, although smaller deposits of cattle, pig and horse also occurred. In Phase 1, 28% of the bones were votive remains; Phase 1/2 ([636] & [673]) was composed entirely of votive deposits in the form of sheep skeletons. Only 7% of the remains in Phase 2...
were initially assigned as being votive in nature, and only 2% by Phase 3. All of these votive deposits will be discussed separately in further detail below.

The presence of a significant number of votive deposits at the site, particularly in the earliest shrine, was confirmed by quantification of the breakage and completeness patterns for identified species (Table 7.8). This revealed that 15% of all the remains were from complete whole bones, and that 20% of the bones were complete in Phase 1, 15% in Phase 2, 10% in Phase 3, and 13% in the other general layers. Less than 1% of the bones showed evidence of burning, and only 1% traces of carnivore gnawing (Table 7.9). The absence of gnawed, poorly preserved material would appear to suggest that burial was reasonably rapid; sacrificial debris was not being moved and spread about much after its primary deposition. It also hints that perhaps access to the area may have been restricted, hence wandering carnivores such as dogs and foxes, as well as other foraging animals like pigs, did not get a chance to disturb the votive deposits.

Considering the chronological and spatial distribution of the assemblage, the majority of the bones came from Phase 2 of the site, and in particular from the main sub-square enclosure ditch (Table 7.10). Other significant groups of material came from Phase 1, the primary shrine and from the general layer, [598], within the interior of F.50. Before discussing the individual species represented within the shrines let us first consider separately the votive deposits recognized during the excavation.

The votive deposits

Unfortunately space precludes full tabular presentation and detailing of each of the votive deposits recognised during the excavation. These are, however, held in the project archives.

The primary shrine (Phase 1; Figs. 7.8, 7.18 & 7.49)

Within the shrine interior in [702] there was a small deposit comprising a few cattle, pig and sheep bones. The cattle remains (mandibles and loose teeth) were too fragmentary to determine their precise age although they were of adult size, and only one individual was present. A single pig was also represented by a loose mandibular tooth and a radius of a juvenile individual. Small quantities of sheep head, trunk, fore-limb and hind-limb elements were present from one individual. The mandible could be assigned to Payne age stage H, representing a mature adult sheep of about 6-8 years.

The fill of a small pit (Figs 7.8, 7.13) contained cattle, pig and sheep/goat bones. Cattle was only represented by a single cervical vertebra. At least two pigs were noted on the basis of the elements represented: one killed in its second year (judging from its dental and epiphyseal fusion data), plus a newborn piglet (as a newborn thia fragment was identified). Sheep bones included head, trunk, fore-limb, hind-limb and foot elements. At least three sheep occurred in the deposit judging from the fusion state of the bones which demonstrated that adult, juvenile and newborn individuals were all present. A sheep scapula had been chopped and a proximal humerus had both chops and dismembering cuts, suggesting that butchery in the form of dismembering fore-limbs was taking place.

A further pit within the interior of Shrine 1 (Figs. 7.96) contained a small quantity of cattle and sheep/goat bones (Fig. 7.11). Cattle were only represented by Cranial elements, and at least seven individuals were represented. Three of the mandibles could be aged, and two of these came from animals killed between 8-18 months, the other mandible being from a slightly more mature individual killed between 18-30 months. An interesting feature of the cattle bones was that some had traces of butchery marks to them. A cranial fragment (occipital condyle; <5761>) had been chopped in two from a medio-lateral aspect in order to separate the head from the rest of the body. In addition, one of the mandible fragments (<5793>) had been chopped through its mandibular hinge, suggesting that the jaws had been deliberately separated from the skull. One of the pairs of calf jaws (aged 8-18 months) had cuts inside the mandibular ramus suggestive of tongue removal. Another of the pairs of calf jaws (also aged 8-18 months) had slight traces of cut marks midway along the underneath of the mandibular symphysis and also had been slightly chopped under the mandibular symphysis around the position of the second milk molar (<5793>). These cuts/chops may possibly relate to the process of skinning. At least two immature sheep were represented by trunk and hind-limb elements.

One of the most interesting votive deposits at the Snow's Farm site was [798]. This was a sheep 'head and hoof' deposit associated with coins (Fig. 7.10). In fact actual single bones from the trunk and fore-limb also occurred within this deposit. At least four individuals were represented. Firstly, three mature adults were recognized from the mandibular dental data, which included at least two pairs of mandibles. Two of them belonged to Payne age stage G (4-6 years) and one to stage H (6-8 years). A fourth individual was recognized by the presence of an unfused epiphysis from a distal humerus. This was from a juvenile individual probably killed during the first half of its first year. At least two pairs of fore and hind feet were represented. These were all fully fused mature elements which presumably matched up with the mandibles described above.

A small group of sheep bones was identified within [865]. Trunk, fore-limb and foot elements were all represented. The sample is extremely small but most of the bones belonged to foot elements. At least two individuals were represented; one was a mature adult, the other being immature.

A further bone group ([866]), possibly related to the former group from [865], consisted of a few cattle and pig bones. Single fore-limb and hind-limb elements were present from cattle and some loose mandibular teeth from pig. Only a single individual of each could be identified from the elements identified. The cattle scapula had cut marks just below its posterior proximal articulation suggestive of dismemberment (<6125>).

A cattle 'hoof deposit' occurred in [884] (Fig. 7.10). In fact a single sheep thoracic vertebra was also present in the same context. The cattle hoof consisted of a pair of hind-limb 'feet' (metatarsals and phalanges) from an immature individual, probably killed during its first or early part of its second year. The metatarsals had medio-lateral cuts just below its anterior proximal articulation (<6125>). Two other interesting bones present (but not recorded on the main data base) were a navicular cuboid and carpal (scaphoid) both with cuts to their medial/lateral aspects. The latter butchery marks are evidently associated with the deposition of calf hooves in the floor deposits.

Another possible cattle and sheep 'head and hoof' deposit occurred in [885] in the floor of Shrine 1 (Fig. 7.10). Cattle were only represented by a first phalanx from an immature individual; the remainder consisted of sheep bones and included both head and foot elements. A single mature individual was represented by a pair of mandibles. This belonged to a sheep aged between 1.5-3 years (Payne age category B). Elements from at least two separate
feet were associated with these mandibles judging from the numbers of phalanges.

Further possible hoof deposits from cattle and pig occurred in [866]. The cattle remains consisted of part of the foot from the fore-limb of a juvenile individual. As the first phalanx was unfused, it is likely that it was from an individual killed during its first year or the early part of its second year. A single second phalanx of pig was associated with the cattle remains. This was also unfused and therefore from a juvenile individual killed during its first two years.

A small collection of cattle and sheep bones was identified in [890]. Cattle were only represented by cranial elements (part of a skull as well as a mandible), whilst the only sheep bones present were elements from the fore-limb and foot (scapula and metacarpal respectively).

Another possible sheep 'head and hoof' deposit occurred in [959]. At least two individuals were represented by loose maxillar and mandibular teeth as well as part of the foot from a fore-limb. Judging from the epiphysial fusion data, one of these may have been a mature individual, the other a juvenile killed some time between the end of its first and second year.

An almost complete sheep skeleton was discovered in the central foundation deposit of the interior of Shrine 1 [1008: Fig. 7.12.C]. Dental data indicated that the sheep belonged in Payne's age category C (i.e. that it had died during its first year, probably between 3–9 months). This particular skeleton could be definitely identified as sheep on account of the morphology of its milk teeth (Payne 1985). The age when the animal had died was confirmed by the epiphysial fusion post-cranial data which also pointed to the animal being killed during its first year.

Phase 1/2

An interesting deposit comprising sheep skeletons and partial limbs from at least seven individuals, associated with pottery vessels, was identified in the northwest corner of the main compound, in [636] and [673] (E73: Figs. 7.12.A, 7.13 & 7.50). Five individuals were represented by partially complete skeletons, and two individuals by just head and trunk elements. Where extra elements occurred supplementary to the core group of skeletons they were predominantly from the fore-limb, hind-limb and feet. It thus seems that some separate limbs may have been placed with the main skeletons. Dismembering cut marks were actually observed to one of the proximal metacarpals in [673] (<3830> confirming that some of the foot deposits had probably been added separately to the skeletons. At least five individuals could be positively identified as belonging to sheep on account of the morphology of their milk teeth (Payne 1986). Epiphysial fusion data indicated that the five main individuals were killed at a young age, almost certainly during their first year. This was confirmed by the dental data which determined that one individual belonged to Payne age category 8, <3 months old; four individuals to age category C (3–9 months) and a single sheep to age category D (9–18 months).

Phase 2

Interestingly, in Phase 2 there appears to be evidence for the continuation of the 'head and hoof' deposits witnessed in Phase 1, the primary shrine. In [655] in the northeast corner of the main compound a deposit of cattle, horse, pig and sheep bones were recorded (Fig. 7.29). The most significant group here was a collection of cattle bones. This largely comprised head and foot elements, although a small number of trunk, fore-limb and hind-limb elements were also recorded. At least 16 individuals were present according to the mandible counts, whereas only four individuals could be counted from the foot elements. This perhaps suggests a special interest in cattle skulls, as cranial fragments and hornbones were also recorded. Five of the mandibles could be aged, two of them belonging to age category C (9–18 months) and three to age category D (18–30 months). Epiphysial fusion data confirmed that some of the individuals were killed during their first or second years. Horse was recorded by the presence of a single fore-limb fragment (distal radius) from a mature adult. A small group of pig bones were recorded, represented by loose teeth as well as fore-limb, hind-limb and foot elements. At least one male boar was present. Most of the post-cranial elements were unfused, so it is likely that the pig would have been killed during its first year. Cranial, fore-limb, hind-limb and foot bones from sheep were also within the same deposit. At least three individuals were represented, including at least one mature and one immature individual.

A small pig and sheep deposit was recorded in the southeast corner of the upcast bank associated with the main compound, from [660] (E71: Fig. 7.12.B). Pig remains were comprised of head, trunk, fore-limb and foot elements. A single male individual was identified which according to the available fusion data probably came from an animal which had died in its third year. The sheep remains were composed of trunk, fore-limb and foot elements. At least three individuals were represented, of which at least one was juvenile, the others being young adults. One of the ribs had been chopped presumably during butchery of the trunk section.

In the middle east part of the main compound, in [698], a small collection of cattle, horse, pig and sheep bones were recovered. A single cattle atlas and horse maxillary tooth was recorded. Pig was represented by a small number of head, fore-limb and hind-limb fragments. Interestingly, a canine was again recorded indicating the presence of at least one boar. At least two individuals were present, one being a juvenile probably killed during its first year, the other being a newly born pig. Sheep was represented by a small number of head, trunk, fore-limb and foot elements. The sheep humerus present exhibited traces of having been chopped to its midshaft.

Phase 3

Only one group of bones was recognized as being a 'votive deposit' within Phase 3 (fig. 7.50). This was in E77, a pit within Shrine 2(3). [877] contained a fragmentary sheep skull along with a pair of mandibles and a loose mandibular tooth fragment. The mandibles could be assigned to Payne age category E and belonged to an individual aged between 1.5–3 years.

As can be seen from the above commentary, some of the so-called ‘votive deposits’ seem more convincing than others. In Shrine 1, there does appear to be evidence for the deposition of cattle cranial elements, sheep ‘head and hoof’ deposits, as well as a sheep skeleton in the foundation deposit. It is relevant to note the contrast in ages between the sheep buried in the central foundation deposit which was killed between 3–9 months, and the ‘head and hoof’ deposit associated with the coins which were from mature adult sheep aged between 4–8 years. During Phase 1/2, in the deposits from the northwest corner of the shrine, clearly the tradition of burying sheep skeletons continued. One of these was from an extremely young individual (aged <3 months old), whilst the remaining five skeletons were all from individuals which were probably killed during the end of their first year. In Phase 2, there is a hint that sheep ‘head and hoof’ deposits may continue although the evidence is not clear. There still appears to be an interest in cattle cranial elements. Pig remains from male boars are present in all three votive deposits recorded ([655], [660] & [698]).
Single fragments of horse were identified in [655] and [698]. In Phase 3, there was an indication that the tradition of burying sheep skulls may have been continued. No obvious votive deposits were recognized during excavation of the other generally dated layers.

Species represented: other contexts

Having detailed the votive deposits, let us now consider the remainder of the assemblage to see if we can detect any other possible evidence for such deposits. If we compare the proportion of species for the whole assemblage by phase and type of context, no major differences can be seen (Table 7.10). In the majority of cases ovicaprid remains dominate, followed by pig, then cattle. The only exception to this was the slightly higher amount of cattle in contrast to pig remains within floor and pit contexts in Phase 1. If we are to examine more closely the non-votive fraction of the assemblage we must consider each of the species occurring at the site in turn, starting with the most abundant.

Sheep (Ovis aries)

Anatomical representation: Table 7.11 provides details of the anatomical representation of sheep. A full range of body elements are represented for the site as a whole. What is striking is the fairly even spread of elements in most phases. This suggests that whole animals were largely brought to the vicinity of the site ‘on the hoof’ before being slaughtered and perhaps sacrificed. The only hint of some bias in the anatomical distribution data is the higher number of mandibles in proportion to other elements in Phase 2, as well as the slightly higher numbers of major fore-limb elements (furca and radius) in contrast to hind-limb elements (femur and tibia). Although a good number of pelves were present in addition, amongst the ‘other’ general layers, higher numbers of mandibles and radii were noted relative to other elements. These hints of a surplus of mandibles in Phase 2 and the other general layers may represent traces of other former votive deposits. There was not, however, an over-abundance of metapodials to support the idea of further ‘head and hook’ deposits. The mandibles might also therefore simply be a result of the dumping of primary butchery waste after the animals were slaughtered and the carcass prepared.

Butchery: Only 5% of the sheep bones showed any trace of butchery (Table 7.12). This seems quite low, although one has to remember that a good proportion of the assemblage was composed of skeletons, partial skeletons and limb segments. A further factor to take into account is that the recording of butchery evidence was restricted to obvious chops and cuts to the bones. Many of the bones may have been simply smashed open rather than delicately dismembered. No special deposits of smashed up diaphyses were recognized, however, during the analysis of the assemblage. Most of the butchering sheep bones occurred in the Phase 1 general layers ([719]), in the Phase 2 ditch and general layer contexts ([692] and [721]), and in the ‘other’ general layers ([508]). Very few of the votive bones exhibited traces of butchery, and those that were present have already been mentioned. In the case of the remainder of the butchery evidence, it appeared to be primarily concerned with dismemberment of the carcass into meat joints. Chops occurred to the bones through the proximal scapula, distal humerus, proximal and midshaft radius, proximal ulna, midshaft femur, midshaft tibia, and distal tibia.

Table 7.10. HAD III: quantification of species by context of occurrence.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Context type</th>
<th>Horse</th>
<th>Cattle</th>
<th>Pig</th>
<th>Sheep</th>
<th>Goat</th>
<th>Dog</th>
<th>Cat</th>
<th>Deer</th>
<th>Pole-cat</th>
<th>Cattle-size</th>
<th>Pig-size</th>
<th>Sheep</th>
<th>Goat-size</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td>Ditch</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Fill</td>
<td>8</td>
<td>25</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Fill/Cut</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Floor</td>
<td>29</td>
<td></td>
<td>142</td>
<td>618</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Layer</td>
<td>48</td>
<td>19</td>
<td></td>
<td>790</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Pit</td>
<td>2</td>
<td>199</td>
<td></td>
<td>166</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Phase 1 (Total)</td>
<td></td>
<td>237</td>
</tr>
<tr>
<td>Phase 1/2 (Total)</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Phase 1/3 (Total)</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Phase 2</td>
<td>Ditch</td>
<td>17</td>
<td>34</td>
<td></td>
<td>729</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Fill</td>
<td>2</td>
<td>34</td>
<td></td>
<td>115</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Fill/Cut</td>
<td>1</td>
<td>6</td>
<td></td>
<td>17</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Layer</td>
<td>14</td>
<td>248</td>
<td></td>
<td>1479</td>
<td>93</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>781</td>
</tr>
<tr>
<td></td>
<td>Layer/Feature</td>
<td>1</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Pit</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Phase 2 (Total)</td>
<td></td>
<td>1030</td>
</tr>
<tr>
<td>Phase 3</td>
<td>Ditch</td>
<td>5</td>
<td>5</td>
<td></td>
<td>63</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Fill</td>
<td>8</td>
<td>7</td>
<td></td>
<td>13</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Fill/Cut</td>
<td>2</td>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Layer</td>
<td>5</td>
<td>25</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Pit</td>
<td>3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Phase 3 (Total)</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Other</td>
<td>Cut</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Layer</td>
<td>4</td>
<td>56</td>
<td></td>
<td>383</td>
<td>35</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Other (Total)</td>
<td></td>
<td>104</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>43</td>
<td>464</td>
<td></td>
<td>1417</td>
<td>4393</td>
<td>685</td>
<td>3</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>104</td>
<td>34</td>
<td>1589</td>
</tr>
</tbody>
</table>

375
Table 7.11. Sheep/goat anatomical representation.

<table>
<thead>
<tr>
<th>Species/Body section</th>
<th>Anatomical element</th>
<th>Phase 1</th>
<th>1/2</th>
<th>1/3</th>
<th>2</th>
<th>3</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheep/Goat (Head)</td>
<td>Horn core</td>
<td>2</td>
<td>3</td>
<td>13</td>
<td>3</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cranium (Occ. cond)</td>
<td>9</td>
<td>6</td>
<td>11</td>
<td>1</td>
<td>8</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maxilla</td>
<td>8</td>
<td>12</td>
<td>32</td>
<td>15</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max. tooth</td>
<td>45</td>
<td>8</td>
<td>223</td>
<td>11</td>
<td>99</td>
<td>386</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mandible</td>
<td>62</td>
<td>10</td>
<td>200</td>
<td>3</td>
<td>91</td>
<td>368</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mand. tooth</td>
<td>67</td>
<td>25</td>
<td>324</td>
<td>13</td>
<td>134</td>
<td>563</td>
<td></td>
</tr>
<tr>
<td>Sheep/Goat-size (Trunk)</td>
<td>Atlas</td>
<td>10</td>
<td>4</td>
<td>30</td>
<td>2</td>
<td>10</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Axis</td>
<td>6</td>
<td>5</td>
<td>20</td>
<td>1</td>
<td>5</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cervical</td>
<td>27</td>
<td>27</td>
<td>114</td>
<td>4</td>
<td>19</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thoracic</td>
<td>49</td>
<td>51</td>
<td>170</td>
<td>3</td>
<td>36</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lumbar</td>
<td>52</td>
<td>28</td>
<td>153</td>
<td>8</td>
<td>26</td>
<td>267</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caudal</td>
<td>9</td>
<td>1</td>
<td>26</td>
<td>2</td>
<td>15</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sacrum</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vertebra</td>
<td>54</td>
<td>38</td>
<td>325</td>
<td>7</td>
<td>115</td>
<td>599</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rib</td>
<td>74</td>
<td>86</td>
<td>190</td>
<td>6</td>
<td>66</td>
<td>422</td>
<td></td>
</tr>
<tr>
<td>Sheep/Goat (Forelimb)</td>
<td>Scapula</td>
<td>64</td>
<td>15</td>
<td>134</td>
<td>13</td>
<td>32</td>
<td>258</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. humerus</td>
<td>35</td>
<td>19</td>
<td>117</td>
<td>9</td>
<td>45</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. humerus</td>
<td>59</td>
<td>13</td>
<td>158</td>
<td>8</td>
<td>52</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. radius</td>
<td>56</td>
<td>15</td>
<td>166</td>
<td>4</td>
<td>110</td>
<td>352</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. radius</td>
<td>31</td>
<td>16</td>
<td>157</td>
<td>1</td>
<td>103</td>
<td>308</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ulna</td>
<td>27</td>
<td>12</td>
<td>77</td>
<td>3</td>
<td>22</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>Sheep/Goat (Hindlimb)</td>
<td>Pelvis</td>
<td>70</td>
<td>13</td>
<td>184</td>
<td>11</td>
<td>54</td>
<td>332</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. femur</td>
<td>49</td>
<td>13</td>
<td>98</td>
<td>7</td>
<td>36</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. femur</td>
<td>49</td>
<td>20</td>
<td>83</td>
<td>9</td>
<td>36</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. tibia</td>
<td>38</td>
<td>12</td>
<td>96</td>
<td>7</td>
<td>31</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. tibia</td>
<td>25</td>
<td>10</td>
<td>94</td>
<td>9</td>
<td>24</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Astragalus</td>
<td>5</td>
<td>12</td>
<td>47</td>
<td></td>
<td>14</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calcaneus</td>
<td>16</td>
<td>11</td>
<td>49</td>
<td>2</td>
<td>21</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Sheep/Goat (Foot)</td>
<td>P. metatarsal</td>
<td>33</td>
<td>13</td>
<td>85</td>
<td>6</td>
<td>19</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. metatarsal</td>
<td>31</td>
<td>14</td>
<td>77</td>
<td>4</td>
<td>12</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. metatarsal</td>
<td>37</td>
<td>12</td>
<td>100</td>
<td>3</td>
<td>36</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. metatarsal</td>
<td>33</td>
<td>13</td>
<td>95</td>
<td>3</td>
<td>30</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. metaphalal</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. metaphalal</td>
<td>24</td>
<td>18</td>
<td>71</td>
<td>2</td>
<td>35</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1st phalanx</td>
<td>72</td>
<td>23</td>
<td>140</td>
<td>5</td>
<td>50</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2nd phalanx</td>
<td>33</td>
<td>10</td>
<td>57</td>
<td>1</td>
<td>25</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3rd phalanx</td>
<td>29</td>
<td>7</td>
<td>36</td>
<td>3</td>
<td>14</td>
<td>89</td>
<td></td>
</tr>
</tbody>
</table>

Table 7.13. Sheep/goat dental data.

<table>
<thead>
<tr>
<th>Age class</th>
<th>Suggested age</th>
<th>Definition</th>
<th>Phase 1</th>
<th>Phase 1/2</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td><3 months</td>
<td>dP4 unworn</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td><3 months</td>
<td>dP4 unworn, M1 unworn</td>
<td>5.5</td>
<td>3.5</td>
<td>43.5</td>
<td>1</td>
<td>15.5</td>
</tr>
<tr>
<td>C</td>
<td>3-9 months</td>
<td>M1 unworn, M2 unworn</td>
<td>16.5</td>
<td>7</td>
<td>86.5</td>
<td>1.5</td>
<td>25.5</td>
</tr>
<tr>
<td>D</td>
<td>9-18 months</td>
<td>M2 unworn, M3 unworn</td>
<td>6.25</td>
<td>1.5</td>
<td>71.8</td>
<td>2.5</td>
<td>16.5</td>
</tr>
<tr>
<td>E</td>
<td>1.5-3 years</td>
<td>M3 unworn, posterior cusp unworn</td>
<td>4.25</td>
<td>2</td>
<td>29.4</td>
<td>4</td>
<td>9.5</td>
</tr>
<tr>
<td>F</td>
<td>3-4 years</td>
<td>M3 posterior cusp worn but pre Payne stage '11G'</td>
<td>4.25</td>
<td>0</td>
<td>15.9</td>
<td>2</td>
<td>8.5</td>
</tr>
<tr>
<td>G</td>
<td>4-6 years</td>
<td>M2 at Payne stage '11G', M2 at Payne stage '9A'</td>
<td>6.25</td>
<td>2</td>
<td>25.9</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>H</td>
<td>6-8 years</td>
<td>M3 at Payne stage '11G', M2 post Payne stage '9A'</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>I</td>
<td>8-10 years</td>
<td>M3 post Payne stage '11G'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

| Total | 48 | 16 | 280 | 12 | 92 |

376
Table 7.12. Butchery data for the major species.

<table>
<thead>
<tr>
<th>Species</th>
<th>Type of butchery</th>
<th>1</th>
<th>1/2</th>
<th>1/3</th>
<th>2</th>
<th>3</th>
<th>Other</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>Chopped</td>
<td>4</td>
<td>11</td>
<td>2</td>
<td>17</td>
<td></td>
<td>100</td>
<td>94.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chopped + Dismembering cut marks</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td>7</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dismembering cut marks</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td>7</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other cut marks</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>5</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>None recorded</td>
<td>100</td>
<td>272</td>
<td>13</td>
<td>53</td>
<td>438</td>
<td>94.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pig</td>
<td>Chopped</td>
<td>6</td>
<td>1</td>
<td>46</td>
<td>1</td>
<td>11</td>
<td>65</td>
<td>17</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>Chopped + Other cut marks</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td></td>
<td>8</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dismembering cut marks</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td></td>
<td>6</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filleting cut marks</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>5</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other cut marks</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>5</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>None recorded</td>
<td>157</td>
<td>1</td>
<td>781</td>
<td>23</td>
<td>365</td>
<td>1328</td>
<td>93.7</td>
<td></td>
</tr>
<tr>
<td>Sheep/Goat Chopped</td>
<td>Chopped</td>
<td>41</td>
<td>95</td>
<td>5</td>
<td>22</td>
<td>163</td>
<td>5.2</td>
<td>93.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chopped + Dismembering cut marks</td>
<td>4</td>
<td>3</td>
<td></td>
<td>7</td>
<td></td>
<td>2</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dismembering cut marks</td>
<td>10</td>
<td>1</td>
<td>28</td>
<td>13</td>
<td>52</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dismembering + Filleting cut marks</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td>9</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filleting cut marks</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td>9</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other cut marks</td>
<td>3</td>
<td>14</td>
<td>7</td>
<td>22</td>
<td>956</td>
<td>4831</td>
<td>95.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>None recorded</td>
<td>841</td>
<td>501</td>
<td>7</td>
<td>2409</td>
<td>117</td>
<td>956</td>
<td>4831</td>
<td></td>
</tr>
</tbody>
</table>

proximal and midshaft tibia, and proximal metatarsal, with cuts evident to the calcaneum
and astragalus in order to separate the lower hind-limb. Butchery was also evident on some
of the sheep-sized trunk fragments. Cervical, thoracic and lumbar vertebrae were chopped
medio-laterally at an oblique angle, and some of the lumbar vertebrae had been split ventrally.
These trunk fragments may have represented meat joints of sheep such as chuck, brisket, breast,
loin and short rack, which all are jointed with ribs and vertebra included (Lyman 1979, 541).

Ageing data: Sheep dentition data are presented in Table 7.13. A total of 47 per cent of the man-
dibles and loose teeth fell within the first three of Payne's (1973) age stages (A–C; i.e. were
younger than 9 months old when they died). This increased to 69 per cent by stage D, when the
sheep would have been aged between 9 and 18 months. Some animals did survive into old age
though, the oldest individuals belonging to stage H, 6–8 years old. Looking at the different site
phases it is possible to see a shift in the distribution peak from stage C in Phases 1, 1/2, and 2, to
stage D in Phase 3. The sample size is rather poor, though, for Phase 3, so this can only be tentatively suggested. The
dental data from the 'other' general layers appeared to be largely similar to Phases 1–2, with
a clear peak of animals killed at stage C (6–9 months). Comparing the mortality profiles
of the different phases visually one can see a certain degree of similarity between Phases
1 & 2, as well as with the general other layers (Fig. 7.35). Phase 3 does appear to be different in that lesser amounts of stage C and D
appear to be slaughtered. This perhaps indicates that sheep were now being maintained under a different strategy, more animals
being allowed to mature rather than being slaughtered. The pattern of tooth eruption and wear in Phases 1–2 and in the 'other' layers,
with peaks at 3–9 months and 9–18 months, appears to be very similar to that from Harlow Roman temple (Legge & Dorrington 1985), and presents the possibility that seasonal autumnal killing
may be taking place.

Sheep fusion data are presented in Table 7.14. The results were broadly similar through all the phases with the exception of the
material from Phase 1/2, which were the bones from the group of skeletons in the northwest corner of the shrine. These were mostly from juvenile individuals (as has already been discussed above in the section on votive deposits). The epiphysial fusion data as a whole seems to indicate the presence of animals older than the dentition data suggests. By the time of the late-fusing group (c. 3-3.5 years), the cumulative percentage of unfused bones ranges between 58 and 62 per cent (excluding the Phase 1/2 skeletons). The dentition data meanwhile shows that 79 per cent of the animals were killed by the end of stage E (i.e. c. 3 years). It is important to remember that these fusion ages are based on figures quoted for modern stock and should, therefore, be questioned. Fusion rates may be influenced by breed, sex, castration and plane of nutrition (Silver 1969), and this may account for some of the discrepancy. The fusion data from the Phase 1/2 skeletons has 87 per cent unfused bones at the time of the late-fusing group, which is more similar to the figure derived from the dental estimates. It is worth noting the presence of newborn individuals in all phases. This may indicate that the animals were actually being raised in the immediate area of the site.

Sexing: It was only possible to provisionally sex eight of the sheep pelvises. The results were as follows. Phase 1/2: [673], skeleton B, male; Phase 2: main sub-square enclosure ditch: four males and a female; Phase 3: range of large posts enclosing Shrine 2: one male; other layers: one female. Although there appeared to be more males than females, this is obviously a very small sample as many of the pelvises could not be sexed because they were too fragmentary. It is likely that young males forming a surplus to breeding requirements may have been singled out for slaughter; however as the data are so sparse no firm conclusion can be drawn.

Pig: (Sus cf. domesticus)
Although wild boar may very well have been hunted, most pig bones on Iron Age and Romano-British sites are those of the domestic pig. Those here were all broadly of a size typical of domestic pigs, so it is largely assumed that most of them are in actual fact domestic. It is possible, however, that some young wild boar may be intermixed with the samples here, as interbreeding between wild and domestic pigs could easily have taken place.

Anatomical representation: Table 7.15 presents the data with regard to the anatomical representation of pig. A full range of pig elements is represented in all phases. This again indicates that whole animals were probably available in the vicinity of the site. The votive pig deposits have already been mentioned above. Three male boars were present in special deposits recorded in Phase 2 ([655], [660] & [698]). The only hint of bias in the anatomical distribution for pigs was the slightly higher numbers of mandibles in proportion to other post-cranial elements in both Phase 2 and the ‘other’ general layers.

Butchery: Only 6 per cent of the pig bones showed traces of butchery (Table 7.12). Most of the butchered pig bones came from the ditch and general layers in Phase 2 ([692] & [721]), as well as the ‘other’ general layers ([558]). The slight surplus of mandibles mentioned above might be a result of the deliberate discarding of pig skulls in

<table>
<thead>
<tr>
<th>Table 7.14. Sheep/goat epiphysial fusion.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>6-10 months</td>
</tr>
<tr>
<td>Scapula</td>
</tr>
<tr>
<td>D. humerus</td>
</tr>
<tr>
<td>Pelvis</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>18-28 months</td>
</tr>
<tr>
<td>D. metacarpal</td>
</tr>
<tr>
<td>D. tibia</td>
</tr>
<tr>
<td>D. metatarsal</td>
</tr>
<tr>
<td>D. metapodial</td>
</tr>
<tr>
<td>D. phalanx</td>
</tr>
<tr>
<td>D. phalanx</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>30-36 months</td>
</tr>
<tr>
<td>P. humerus</td>
</tr>
<tr>
<td>P. femur</td>
</tr>
<tr>
<td>P. calcanea</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>36-42 months</td>
</tr>
<tr>
<td>P. humerus</td>
</tr>
<tr>
<td>D. radius</td>
</tr>
<tr>
<td>D. femur</td>
</tr>
<tr>
<td>P. tibia</td>
</tr>
<tr>
<td>Total % unfused</td>
</tr>
</tbody>
</table>
these particular deposits. Most of the butchered pig bones from the ditches had been chopped. Basic dismemberment of the carcass into meat joints appeared to be taking place, chops occurring through the proximal scapula, proximal and distal humerus, proximal ulna, acetabulum and ilium of the pelvis, distal femur, and proximal and distal tibia, with cuts evident to the calcaneum and astragalus to separate the lower hind-limb.

Ageing data: Mandibles and loose teeth were recorded using the system of Grant (1975) along with age data taken from Bull & Payne (1982). Although these age data were collected from modern Turkish pigs and wild boar, it has been shown that the timing of tooth eruption between wild and domestic pigs is probably less variable than has been thought (Bull & Payne 1982). Three age groups were developed from their work which they suggest are probably the most suitable for general application to mandibles and teeth from archaeological sites (Table 7.16). Almost 60 per cent of the Snow's Farm pigs fell into Bull & Payne's group 1, representing animals killed during their first year (c. 7–11 months); by the end of the second year (19–23 months; group 2) this had risen to 99 per cent of the pigs.

<table>
<thead>
<tr>
<th>Species/Body section</th>
<th>anatomical element</th>
<th>1</th>
<th>1/2</th>
<th>1/3</th>
<th>Phase 2</th>
<th>3</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pig (head)</td>
<td>Cranium (Occ. cond.)</td>
<td>1</td>
<td>9</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Maxilla</td>
<td>11</td>
<td>39</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Max. tooth</td>
<td>9</td>
<td>52</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Mandible</td>
<td>14</td>
<td>79</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Mand. tooth</td>
<td>23</td>
<td>134</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td>209</td>
</tr>
<tr>
<td>Pig (size trunk)</td>
<td>Atlas</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Cervical</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Thoracic</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Lumbar</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Vertebra</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Rib</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Pig (forelimb)</td>
<td>Scapula</td>
<td>15</td>
<td>41</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>P. humerus</td>
<td>9</td>
<td>51</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>D. humerus</td>
<td>9</td>
<td>49</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>P. radius</td>
<td>8</td>
<td>31</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>D. radius</td>
<td>8</td>
<td>32</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Ulna</td>
<td>12</td>
<td>59</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>Pig (hindlimb)</td>
<td>Pelvis</td>
<td>8</td>
<td>19</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>P. femur</td>
<td>17</td>
<td>17</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>D. femur</td>
<td>2</td>
<td>20</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>P. tibia</td>
<td>9</td>
<td>46</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>D. tibia</td>
<td>9</td>
<td>33</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Astragalus</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Calcaneus</td>
<td>1</td>
<td>19</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Pig (foot)</td>
<td>P. metacarpal</td>
<td>14</td>
<td>28</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>D. metacarpal</td>
<td>13</td>
<td>18</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>P. metatarsal</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>D. metatarsal</td>
<td>3</td>
<td>1</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>P. metapodial</td>
<td>3</td>
<td>1</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>D. metapodial</td>
<td>6</td>
<td>63</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>1st phalanx</td>
<td>9</td>
<td>30</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>2nd phalanx</td>
<td>4</td>
<td>24</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>3rd phalanx</td>
<td>2</td>
<td>24</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age class</th>
<th>Suggested age</th>
<th>Definition</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>7-11 months</td>
<td>Unreplaced milk molars and unerupted second molars</td>
<td>9</td>
<td>51</td>
<td>0</td>
<td>16</td>
<td>76</td>
</tr>
<tr>
<td>Group 2</td>
<td>19-23 months</td>
<td>P2-P4 erupted, second molars in wear and third molars close to erupting or in the early stages of eruption and wear</td>
<td>5</td>
<td>26</td>
<td>1</td>
<td>17</td>
<td>49</td>
</tr>
<tr>
<td>Group 3</td>
<td>31-35 months</td>
<td>Third molars in later stages of eruption and wear</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>14</td>
<td>79</td>
<td>1</td>
<td>33</td>
<td>127</td>
</tr>
</tbody>
</table>
Table 7.17. Pig epiphyseal fusion.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Fusion group</th>
<th>0-12 months</th>
<th>24-27 months</th>
<th>24-30 months</th>
<th>36-42 months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Newborn Unfused</td>
<td>Fused</td>
<td>Newborn Unfused</td>
<td>Fused</td>
<td>Newborn Unfused</td>
</tr>
<tr>
<td>0-12 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scapula</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>D. humerus</td>
<td>3</td>
<td>5</td>
<td>12</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>P. radius</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Pelvis</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Cum % unfused</td>
<td></td>
<td>(80.8)</td>
<td></td>
<td>(65.7)</td>
<td></td>
</tr>
<tr>
<td>24-27 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. tibia</td>
<td>5</td>
<td>3</td>
<td>15</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>D. metacarpal</td>
<td>7</td>
<td>14</td>
<td>14</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>D. metatarsal</td>
<td>1</td>
<td>14</td>
<td>14</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>D. metapodial</td>
<td>5</td>
<td>3</td>
<td>59</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>P. 1st phalanx</td>
<td>6</td>
<td>2</td>
<td>15</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>P. 2nd phalanx</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Cum % unfused</td>
<td></td>
<td>(87.9)</td>
<td></td>
<td>(78.3)</td>
<td></td>
</tr>
<tr>
<td>24-30 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. calcaneum</td>
<td></td>
<td>3</td>
<td>13</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Cum % unfused</td>
<td></td>
<td>(87.9)</td>
<td></td>
<td>(79.5)</td>
<td></td>
</tr>
<tr>
<td>36-42 months:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. humerus</td>
<td>4</td>
<td>2</td>
<td>12</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>D. radius</td>
<td>4</td>
<td>3</td>
<td>14</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>P. ulna</td>
<td>2</td>
<td>5</td>
<td>16</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>P. femur</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>P. tibia</td>
<td>6</td>
<td>1</td>
<td>11</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>Total % unfused</td>
<td></td>
<td>(92.0)</td>
<td></td>
<td>(86.0)</td>
<td></td>
</tr>
</tbody>
</table>

Table 7.18. Pig dental sex data.

<table>
<thead>
<tr>
<th>Phase</th>
<th>1</th>
<th>1/2</th>
<th>1/3</th>
<th>2</th>
<th>3</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male, maxillary canine</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male, mandibular canine</td>
<td>5</td>
<td>26</td>
<td>18</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female, maxillary canine</td>
<td>9</td>
<td>1</td>
<td>5</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female, mandibular canine</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pig epiphyseal fusion data is presented in Table 7.17. The fusion data shows a high proportion of unfused bones in all periods (excluding the poor sample size in Phase 3). The fusion data generally confirms the dental data. The majority of animals were probably killed during the first year of their life, only a very limited number of individuals being kept into old age. It is worth remarking upon the presence of newborn individuals in all phases. This may indicate that the animals were actually being raised in the immediate area of the site.

Sexing: A number of pig canines/alveoli could be sexed. These are presented in Table 7.18. Most of the pig sexing data came from Phase 2 and the 'other' layers. Males appeared to be more common than females, although obviously this is a small sample, and one has to consider the taphonomic bias of male canines surviving better than their female equivalents. Nevertheless, we have already noted that in Phase 2 three boars were present in the votive deposits, so it seems there may have been a real interest in using male boars during this particular period. Male pigs may have been killed earlier than females, as breeding sows would have been valued and males could have been more aggressive and difficult to maintain. Young males forming a surplus to breeding requirements may, therefore, have been singled out for slaughter.

Cattle (Bos taurus): Table 7.19 presents the data with regard to the taphonomic representation of cattle. It clearly demonstrates that there was a bias towards cranial over fore-limb and hind-limb elements in Phases 1 & 2, largely as a result of some of the votive deposits described earlier. Other body sections were also represented, suggesting again that whole animals may have been processed in the close vicinity of the site; a number of butchering activities clearly took place ranging from primary stages (e.g. skulls, limbs and feet are removed) to the table waste stage (e.g. ribs and upper limb fragments).

Butchery: Only 6 per cent of the cattle bones showed traces of butchery (Table 7.12). Most of the butchered cattle bones came from the votive deposits in Phase 1, already discussed above, as well as from general layers in Phase 2 [692]. General dismembering of the carcass was indicated along with possible evidence of skinning in the case of some of the votive deposits (see above).

Aging data: Cattle dentition data are presented in Table 7.20. Only a small amount of data were available and much of this was from the already discussed votive deposits. The majority of cattle were killed
at a young age. By stage C (8–18 months), 47 per cent had been killed, rising to 91 per cent by stage E (30–36 months).

Epiphyseal fusion data for cattle are presented in Table 7.21. This broadly matches the picture presented by the dental information, implying that most cattle were killed within their first three years of life.

Minor species

The total number of fragments from minor species was only 59 (<1 per cent of the total number of diagnostic fragments identified to species; Table 7.22):

- **Horse (Equus caballus):** Horse was represented by 43 bones; no butchery or burning was present to any of these. A tibia in Phase 3 ([554], [562]) had traces of carnivore gnawing. Head, fore-limb, hind-limb and foot elements were all represented. At least two individuals were represented in 17 different contexts (Phase 1: [719] and [500], Phase 2: [550], [583], [592], [599], [655], [667], [698], [721], [722], [732], [742], [756]).

- **Dog (Canis familiaris):** Dog was represented by 13 bones, none showed any apparent signs of gnawing, burning or butchery. Head, trunk, fore-limb, hind-limb and foot elements were all represented. At least three individuals were represented in five different contexts (Phase 2, [697], [722], [732] & [777]; and [558] from the other general layer).

- **Cat (Felis domesticus):** Cat was represented by a single complete humerus in Phase 2 from the main sub-square enclosure ditch ([721], <5616>). This was from a fully adult individual. No trace of gnawing, burning or butchery was present. It was presumed that this belonged to a domestic cat on account of its general size and morphology.

- **Red Deer (Cervus elaphus):** Red deer was represented by a single antler tine fragment. This was from Phase 2 from the ditch of the main sub-square enclosure ditch ([795], <5854>). This had been manufactured into a knife handle where traces of the metal rivet survived and the surface of the tine had been smoothed to make the handle.

- **Polecats (Mustela putorius):** Polecats were represented by a single mandible fragment, <1 per cent of identified fragments. This came from Phase 2 from the main sub-square enclosure ditch ([795], <5854>).

It is worth remarking on the presence of the polecats (Mustela putorius). In Britain it was widespread up to the nineteenth century but gradually became exterminated due to the fur trade. It is now only present in the Welsh counties, Herefordshire, Gloucestershire and Shropshire (Walton 1977). It can occupy a wide variety of habitats (woodland, farmland, marsh, river banks, sand dunes, forest plantations), generally in thinly populated areas, and is often associated with farm buildings and houses on the edge of settlements. The polecats is less common on high ground in mountain areas, but frequents river valleys and lower ground (Walton 1977). Its diet is
carnivorous and it can take a wide variety of prey including hare, rabbit, voles, mice and birds, and some of its food may be taken as carrion. The presence of polecat at the site may indicate that it was scavenging the carrion waste from feasts or sacrifices made at the shrine.

Small mammal

A total of 367 small mammal bone fragments were observed in the assemblage. There was unfortunately not sufficient time to include the detailed analysis of these within this report. A preliminary examination of the material by the author (along with a rapid scan by Terry O’Connor) revealed the presence of the following species: Field vole (Microtus agrestis) appeared to be common throughout the site, in all phases and context-types. Brown rat (Rattus norvegicus) was less frequent than field vole, though common. Water vole (Arvicola terrestris) was represented by a single femoral shaft in Phase 2.

The following observations can be made with regard to the small mammal species identified to date: the field vole (Microtus agrestis) in Britain inhabits mainly rough, ungrazed grassland, including young forestry plantations with a lush growth of grass. It generally occurs in low-density populations in marginal habitats such as woodlands, hedgerows, blanket bog, dunes scree and moorland. The field vole is herbivorous, feeding primarily on green leaves and stems of grasses (Evans 1977). It is preyed upon by many birds, including heron, buzzard and eagle, and this may explain one of the ways it might be introduced to the sites in the form of pellets from these birds. The brown rat (Rattus norvegicus) is typically found associated with farms, refuse tips, sewers and warehouses, but occurs in hedgerows around cereal crops, especially in summer and autumn, and root crops all the year round. Generally it prefers areas with dense ground cover close to water (Taylor 1977). The brown rat will eat almost anything, including bones. This could explain its presence here, as it may be that it opportunistically scavenged carrion waste from feasts/sacrifices at the shrine. Although the incidence of gnawing was generally quite low with regard to the larger mammal bone, gnawing was observed on a considerable proportion of the bird bones (Sheila Sutherland pers. comm.). Finally the water vole (Arvicola terrestris) mainly inhabits the well-vegetated banks of lowland rivers, ponds, canals and drainage ditches and its diet consists mainly of grasses. In Central Europe the species is less aquatic, burrowing like moles in pasture, and this habitat is found in some areas in Britain (Stoddart 1977). The single water vole bone represented on the site was of a very fresh, white appearance and may, therefore, possibly be intrusive.

Table 7.21. Cattle epiphyseal fusion.

<table>
<thead>
<tr>
<th>Phase</th>
<th>7-18 months</th>
<th>24-36 months</th>
<th>42-48 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scapula</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D. humerus</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>P. radius</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pelvis</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>P. 1st phalanx</td>
<td>7</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>P. 2nd phalanx</td>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>cum % unfused</td>
<td>(52.4)</td>
<td>(27.5)</td>
<td>(57.1)</td>
</tr>
<tr>
<td>D. metacarpal</td>
<td>5</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>D. metatarsal</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>cum % unfused</td>
<td>(63.3)</td>
<td>(45.9)</td>
<td>(57.1)</td>
</tr>
<tr>
<td>36-42 months:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. calcaneum</td>
<td>1</td>
<td>(45.5)</td>
<td>(63.3)</td>
</tr>
<tr>
<td>cum % unfused</td>
<td>(63.3)</td>
<td>(45.5)</td>
<td>(57.1)</td>
</tr>
<tr>
<td>42-48 months:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. humerus</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D. radius</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P. ulna</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>P. femur</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>D. femur</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P. tibia</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total % unfused</td>
<td>(67.6)</td>
<td>(68.2)</td>
<td>(62.5)</td>
</tr>
</tbody>
</table>

Table 7.22. Horse, dog, cat, deer and polecat anatomical representation.

<table>
<thead>
<tr>
<th>Species</th>
<th>Section</th>
<th>Anatomical element</th>
<th>Phase 1/2</th>
<th>1/3</th>
<th>2</th>
<th>3</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horse</td>
<td>Head</td>
<td>Cranium (Occ. Cond.)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max. tooth</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mandible</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forelimb</td>
<td>Scapula</td>
<td>1</td>
<td>15</td>
<td>2</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. radius</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hindlimb</td>
<td>Tibia</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foot</td>
<td>D. metacarpal</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. metatarsal</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. metatodial</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1st phalanx</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3rd phalanx</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog</td>
<td>Head</td>
<td>Maxilla</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mandible</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trunk</td>
<td>Axis</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forelimb</td>
<td>P. radius</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. radius</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hindlimb</td>
<td>Pelvis</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foot</td>
<td>3rd phalanx</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cat</td>
<td>Forelimb</td>
<td>D. humerus</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deer</td>
<td>Head</td>
<td>Antler</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polecat</td>
<td>Head</td>
<td>Mandible</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bird
A preliminary inspection of the bird bone assemblage was made by Sheila Sutherland, using her personal comparative collection. There were 2293 fragments, the majority of these coming from Phase 2 (2229 fragments, 86% per cent of the total number of bird bone fragments). Her comments on which species are present can be seen in Table 7.23. Most of the remains belonged to domestic fowl (Gallus domesticus), followed by duck (Anatinae) and goose (Anserinae), with smaller quantities of grebe (Podicipitidae), cormorant (Phalacrocorax carbo), heron (Ardea sp.), mallard (Anas platyrhynchos), teal (Anas crecca), some sort of raptor (Accipitridae), white-tailed sea eagle (Haliaeetus albicilla), buzzard (Buteo buteo), pheasant (cf. Phasianus colchicus), coot (Fulica atra), thrush (Turdus sp.), starling (Sturnus vulgaris), and crow (Corvus corone/frugilegus). At HAD V, in the preceding Iron Age period, the bird bone assemblage included swan, pelican, ducks, crane, sea eagle and coot (Serjeantson, this volume). The Snow's Farm shrine bird bone also included ducks, sea eagle and coot, but was dominated by bones of domestic fowl. This demonstrates a certain degree of continuity in the exploitation of local waterfowl, but also the development of poultry keeping by Roman-British times.

The examination of the Snow's Farm shrine's bird assemblage by Sutherland raises several points of interest. Medullary bone was present in several of the fowl bones, and in one of the duck bone fragments. Occasionally very young fowl bones are present, but less commonly found are juvenile duck bones or juvenile bones in the other species present. Evidence of cooking of some sort, whether roasting or boiling is present. occasional cut-marks are present to the bones, but they do not commonly occur. Clawing was present on a considerable proportion of the bones, many having gnaw marks, tooth holes, etc. Pathology present was limited to a few mended breaks and the occurrence of osteoporosis.

Water birds such as swans, geese and ducks, as well as marsh-dwelling birds, feature strongly in Romano-Celtic iconography. Geese and chicken bones are found at a number of sites during the period in question. Megaw has observed that goose-bones are common in Iron Age warrior's graves in eastern Slovakia (Megaw 1970), and it has been suggested that the aggressive nature of goose may have given them a war/protection role in ritual activities (Green 1986, 187). At the Romano-British shrine at Uley in Gloucestershire, geese were deliberately selected as offerings. Interestingly, the temple was dedicated to Mercury, whose normal companions are the goose and the cock (Ellison 1977, 1980; Woodward & Leach 1993).

After waterfowl, the next most prominent birds in Celtic religion were crows and ravens. As these birds preyed on carrion, they undoubtedly could have taken advantage of the items being disposed of in the area of the shrines. Small bronzes of ravens have been found at Elmham, Norfolk, and were part of the Willingham Fen hoard. Ravens seem to be often associated with disused storage pits; for example, at the Iron Age hillfort at Winklebury, a pit was excavated which contained a pig burial with a spread-sagged raven at the base (Wait 1985, 122–53). Ravens also occurred in some numbers at Danebury.

Large birds such as eagles are reported as being used in omphalotomony by the Celts (Ross 1967, 295). Eagles were believed to be capable of indicating the outcome of events by means of their flight and screaming. The eagle is normally associated with Jupiter. Archaeological depictions of eagles in Romano-Celtic contexts in Britain include the discovery of more than half a dozen bronze eagles at the site of Wood Eaton in Oxfordshire.

<table>
<thead>
<tr>
<th>Phase/Description</th>
<th>Contexts (No. of fragments)</th>
<th>Species present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1/2 Series of shallow pits containing Sheep/Goat skeletons accompanied by pots (NW corner)</td>
<td>673 (24)</td>
<td>Domestic Fowl, Duck</td>
</tr>
<tr>
<td>Phase 2 Shallow pre-main enclosure ditch</td>
<td>699 (9)</td>
<td>Domestic Fowl, Duck</td>
</tr>
<tr>
<td>Main sub-square enclosure ditch</td>
<td>587 (2), 592 (4), 634 (21), 721 (352), 742 (1), 798 (17), 795 (127), 851 (20), 857 (14), 956 (28)</td>
<td>Domestic Fowl, Goose, Duck, Teal, Coot, Rook/Crow</td>
</tr>
<tr>
<td>Upcast bank associated with main enclosure ditch (interior)</td>
<td>571 (2), 758 (1), 817 (6), 862 (6), 969 (2)</td>
<td>Domestic Fowl, Duck, Coot, Heron</td>
</tr>
<tr>
<td>Shallow hollow producing a lot of tile</td>
<td>751 (7)</td>
<td>Duck</td>
</tr>
<tr>
<td>North/South ditch flanking F.68 (F.53)</td>
<td>578 (5), 580 (1), 631 (3), 970 (1), 971 (1)</td>
<td>Domestic Fowl, Duck</td>
</tr>
<tr>
<td>North/South ditch flanking F.68 (F.54)</td>
<td>593 (1)</td>
<td>Domestic Fowl, Goose, Duck, Tee, Mallard, Teal, Buzzard, Raptor, Starling, Thrush, Rock/Crow</td>
</tr>
<tr>
<td>Other layers</td>
<td>583 (9), 947 (3), 650 (3), 655 (48), 671 (3), 679 (101), 681 (4), 682 (2), 685 (6), 690 (4), 692 (1129), 697 (14), 698 (17), 718 (42), 722 (16), 732 (129), 733 (3), 788 (8), 812 (4), 993 (1)</td>
<td>Domestic Fowl, Goose, Duck, Mallard, Teal, Buzzard</td>
</tr>
<tr>
<td>Phase 3 Main sub-square enclosure ditch</td>
<td>708 (1)</td>
<td>Domestic Fowl</td>
</tr>
<tr>
<td>Post-built square structure</td>
<td>639 (1), 750 (1)</td>
<td>Domestic Fowl</td>
</tr>
<tr>
<td>Range of large posts enclosing post-built structure</td>
<td>687 (1)</td>
<td>Domestic Fowl</td>
</tr>
</tbody>
</table>
Fish

Identification of the fish bone material was made by Dr Andrew Jones, using the comparative collection at the Environmental Archaeology Unit (EAU), University of York. A total of 145 fish bone fragments were recovered (Table 7.24). The majority of these originated from Phase 2 (97 per cent of the total fish bone, with 692 within Phase 2 providing 83 per cent of the total fish bone from the site). The following species were represented: pike (Esox lucius), carp (Cyprinidae) and perch (Percidae). The remains of pike accounted for the majority of the bones (95 per cent). Based on comparing the relative size of some of the more complete pike elements, including the vomer, dentary and palatine, with modern reference specimens in the EAU reference collection, it was possible to estimate the approximate original sizes of some of the fish. Five dentaries were from fish about 30-40 cm in length; one was from a 50 cm long fish, whilst an extremely large pike of about a metre was present in [721] in the main sub-square enclosure ditch. Several other elements also suggested metre-long pike, based on a palatine also in [721], a vomer in [692] and a palatine again in [718].

All the fish species present have broadly similar environmental preferences. The pike is typically an inhabitant of lowland rivers and lakes, especially those containing submerged marginal vegetation (Wheeler 1978), while the perch family (Percidae) are, broadly speaking, fishes of lowland rivers, lakes and ponds where the current is slow, as are the carp family (Cyprinidae; Wheeler 1978). Although pike bones formed an overwhelming majority in the assemblage, this does not necessarily mean that economically they were more important than the other species. The fish bone material from almost all contexts was recovered by hand retrieval. We might therefore expect a bias in recovery due to both taphonomic and archaeological factors, preservation and fragmentation differentially affecting the softer bones of certain species, and recovery and identification being biased towards recovering the larger and more diagnostic pieces. Pike bones may be more resistant to scavengers, weathering and erosion than bones of other fish, and tend to have a conspicuous shiny black surface which may lead to a collecting bias in certain deposits (Noe-Nygaard 1983).

However, it is noticeable that from a total of 138 pike bone fragments, the majority are pre-caudal and caudal vertebrae, with just a few skull and other body elements present (palatine, dentary, vomer, parasphenoid and articular). The fact that relatively few skull elements are present, including a surprising lack of cleithrum, which in pike is a fairly large bone tending to survive quite well, may suggest that filleting of the fish was taking place elsewhere. The majority of the fish heads may not have been brought to the site itself, but dumped at the location where caught, as the pike head is unattractive, has very sharp teeth and has very little meat on it.

Table 7.24. Fish bones. Key: art = articular, cleith = cleithrum, de = dentary, fr = fragment, fv = first vertebra, L = left, pal = palatine, para = parasphenoid, pcv = pre-caudal vertebra, cv = caudal vertebra, R = right, ve = vertebra, vo = vomer.

<table>
<thead>
<tr>
<th>Phase/Description</th>
<th>Context</th>
<th>Grid</th>
<th>Pike</th>
<th>Carp family</th>
<th>Perch family</th>
<th>Unidentified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other layers</td>
<td>701</td>
<td>2800/3980</td>
<td>1 pcv</td>
<td>Esox lucius</td>
<td>Cyprinidae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>719</td>
<td>2800/3480</td>
<td>1 pcv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>816</td>
<td>2750/3980</td>
<td>1 de (R, 30-40 cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main sub-square enclosure ditch</td>
<td>721</td>
<td>2720/4055</td>
<td>1 pal (100 cm), 1 art, 1 de (100 cm), 3 pcv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>795</td>
<td>all area</td>
<td>2 pcv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>851</td>
<td>2747/4050</td>
<td>1 de (R, 30-40 cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>956</td>
<td>all area</td>
<td>1 pcv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other layers</td>
<td>655</td>
<td>2776/3213</td>
<td>1 de (L, 50 cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>679</td>
<td>2765/3863</td>
<td>1 de (R, 30-40 cm), 1 pcv, 1 cv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>692</td>
<td>2760/4000</td>
<td>1 ve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>697</td>
<td>2810/3950</td>
<td>2 pcv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>718</td>
<td>2800/3950</td>
<td>1 pal (100 cm), 1 art, 1 de (100 cm), 3 pcv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>732</td>
<td>2759/3838</td>
<td>1 de (R, 50-70 cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>733</td>
<td>3025/3775</td>
<td>1 pal (100 cm), 1 art, 1 de (100 cm), 3 pcv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Layers</td>
<td>859</td>
<td>2880/4020</td>
<td>1 de (L, 30-40 cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>158</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

384
Pikes do not mature until about two years of age, at which point males reach a length of about 27-48 cm and females 31-49 cm (Frost & Kipling 1967). Several of the pike bones from the Snow's Farm shrines were from fish much larger than the 96 cm length reference pike with which they were compared. This means that several of the pike were probably in excess of one metre. Very large pike can be very cunning to catch and often inhabit the less easily accessible parts of the lake. Pike is relatively easy to catch, however, during spring and early summer, when it inhabits the shallow, warm water zone close to the lake shore, when their mating dance takes place (Noe-Nygaaed 1983). This may explain how large mature individuals may be more easily obtained at their spawning grounds at low water near the edge of a lake.

Discussion
Is the assemblage completely votive?
We return now to the original questions that were posed concerning the animal bone assemblage retrieved from the Snow's Farm shrines. Is the whole assemblage votive (i.e. relating to sacrifice and subsequent feasting) or does it relate to regular settlement activities on the site? How far is it possible to go with regard to the interpretation of the relationship between placed and non-placed settings? Clearly a good proportion of the assemblage probably is connected with sacrifice and subsequent feasting. As discussed in the introduction, though, it is often difficult to distinguish votive from non-votive deposits. Clearly some of the non-votive bones may be partly a result of similar kinds of activities to the sacrifices taking place within the shrines (e.g. the higher numbers of sheep and pig mandibles and emphasis on cattle cranial elements). There did not appear to be convincing evidence, though, for further occurrences of 'hoof deposits' away from the main votive deposits. The relative evenness of distribution of the other anatomical elements suggests more that whole animals were being consumed and their parts subsequently discarded on the site. Such refuse might result from nearby settlement activities, but could also be related to some kinds of organized feasting activities.

The deposition of whole and partial animal bodies, especially those of immature animals, would seem to be an uneconomic practice but appears to have been consistently performed at the site. There is clearly some consistency in the body parts selected from each species, such consistency implying that the choices were deliberate and following customary patterns of behaviour. The votive deposits could all broadly be assigned to one of the following categories:

- Complete/partial skeletons in pits and floors
- Skull and hooves deposited under floors
- Skull/mandibles in pits
- Skull and limb deposits in pits
- Limb deposits in pits.

Deliberate burial is corroborated by the presence of pots with the sheep skeletons in the pits in the northwest corner of the shrine, and also by the coins placed in the mouths of the sheep jaws found under the shrine floor. Wait (1985) has made an extensive study of ritual and religion from the period of the Iron Age up to the Roman conquest in Britain, including the available evidence from Romano-Celtic shrines. He came to the conclusion that not all animal sacrifices necessarily resulted in animals (or parts thereof) being dedicated to the supernatural; many sacrifices may occur at socio-politico-religious festivals, the animals being consumed ritually as part of a religious feast. This may leave little trace. However, when the purpose of the ritual is to cajole or bribe, or to thank a god for a particular action, it is necessary that part or all of the animal must be either destroyed or removed from circulation, burial being a common method of achieving this (Wait 1985, 151). Recently it has been demonstrated that the symbolic treatment of animal heads/crania, 'head and hoof burials', mandibles and articulated limbs is a widespread practice in both the archaeological and ethnographic record (Wilson 1999).

The deposition of complete skeletons obviously involved a loss of animal products to the community as a whole. The sheep skeletons deposited were all from immature animals, sacrificed before the end of their first year (with the exception of just one skeleton, probably sacrificed during the middle of its second year). The dentition data appear to suggest that sacrificing of sheep may have taken place seasonally in the autumn. The deposition of articulated limbs also evidently represents an economic loss to the community in simple terms of loss of meat and the secondary products provided.

In contrast, the deposition of lower limbs which carry little meat need not necessarily represent a special deposit. However, when animals are skinned, it is usual to cut off the lower limbs from the rest of the body and the skin may be left attached to these extremities. It is suggested that the sheep skull and hoof deposits may represent a sacrifice in the form of a sheepskin, the skulls having little meat and secondary products being disposed of with them. Although the sheep metapodials may have been placed very carefully either side of the skulls, it is possible that they were still attached to the sheepskin. The dentition evidence available from these deposits suggested that they were from much older animals than the other sheep in the temple. Such animals may very well have been kept into maturity for their wool, although of course milk and other secondary products may also have had some importance. The sacrifice of a sheepskin would, of course, itself also represent a loss.
The deposition of skull and mandibles alone would appear to represent the disposal of waste elements from sacrifices made at the temple. As discussed earlier, the cattle skull and mandible deposits within the pit in Shrine 1 appear to represent waste elements from the exploitation of cattle. Dental data suggested that they were from relatively immature animals, killed within their first two years. Butchery evidence showed that the skull had been decapitated from the main body and that the jaws had been chopped to separate them from the skull to facilitate tongue removal. Butchery marks present to the mandibular symphysis of one of the pairs of mandibles in the pit probably relate to the process of skinning. It is worth noting that a pair of calf hooves accompanied the sheep skull and hoof deposits under the floor of the shrine; the deposition of calfskins, or at least the waste elements from the skinning of cattle, may therefore also have been taking place.

Sheep husbandry: from sacrifice to wool production?
Is there any difference in the kill-off pattern of votive sheep deposits vs. non-placed deposits? Amongst the votive sheep deposits both young and mature animals were present. The central foundation deposit contained the skeleton of an animal which had died between 3-9 months (i.e. probably before its first winter was over; [1008]). In contrast, other features contained more adult mature sheep. For example, in [798], the ‘head and hoof’ deposit associated with coins, two individuals were 4-6 years old and another 6-8 years old. Comparing the mortality profiles of the different phases visually one can see a certain degree of similarity between Phases 1 & 2, as well as with the general other layers (Fig. 7.35). Phase 3 does appear to be different in that lesser amounts of stages C & D appear to be slaughtered (i.e. fewer animals were killed at the end of their first or second year). We may be witnessing here a contrasting strategy being utilized for sheep husbandry, more animals being allowed to mature rather than being slaughtered. It has been reported that according to a number of faunal assemblages studied from Roman sites in the central Fenlands, most sheep appear to have been raised into their second or third years, suggesting that they may have been kept primarily for their wool (Potter 1981).

Continuity and discontinuity in ritual practice
Are there any major differences between the deposits in Shrine 1 and Shrine 2, and is there any evidence for continuity in ritual practices on the site? There are not any major differences between them in terms of the material represented, apart from the presence of horse in the latter shrine. In Shrine 2, there is a hint that sheep ‘head and hoof’ deposits may continue, although the evidence is not entirely clear. There does, however, still appear to be an interest in cattle cranial elements. Remains from boars were present in all three votive deposits recorded within Phase 2 ([655], [660] & [698]), so this may represent some new forms of ritual behaviour adopted at the site. Horse remains occur in Shrine 2 for the first time, although it is only represented by two fragments. The presence of a single votive deposit in Phase 3, comprising a sheep skull and pair of mandibles, indicates that some degree of continuity in ritual practices was being maintained at the site.

It is worth pointing out that there clearly appears to be some degree of continuity in ritual practice from the adjacent preceding Iron Age horizons at HAD V. At that particular site, foundation deposits associated with Building 3 included skeletons of a goat, an adult sheep or goat and two lambs (Serjeantson this volume). It is also noted that almost complete pig skull was recovered. A crane skeleton with its head missing was also identified within the external ditch silts. This suggests that a ritual interest in sheep/goat, pig and certain birds was maintained. It is interesting, though, that animals such as beaver, swan, pelican and crane were not recorded in the Romano-British shrine deposits, even though they occurred at the Iron Age settlement.

Birds and fish: votive deposits?
Do the bird and fish remains recovered represent votive deposits? Many of the birds probably do. Bones of domestic fowl and duck are present in all of the phases, and are associated with many of the layers and deposits rich in sheep material. This is similar to many of the deposits found at Uley, although the ovicaprid remains were mostly goat associated with domestic fowl (Levitan 1993). A small amount of goose and duck was also reported at Uley (Coxles 1993). Some of the other bird species which occur at the Snow’s Farm shrines may very well have been deliberately introduced to the site, whereas others may simply have occurred naturally by non-anthropogenic means. Most of the birds present illustrate the exploitation of local Fenland resources, and all of the species might be local to the area around the site. The considerable quantities of duck and the presence of numerous water and wader birds suggest that hunting and wildfowling may have played an important part in resource exploitation. Some of
The white-tailed sea eagle has a massive build with a wide span of very broad wings (79–92" / 1.80–2.30 m), and can sometimes live for up to 40 years. This magnificent species is not an immediately obvious choice as a foodstuff (Cowles 1993). Its presence, as indeed that of the buzzard (Buteo buteo), may be due to the activity of scavenging the carrion waste from feasts/sacrifices made at the shrine, or alternatively they may themselves represent votive deposits of some sort. Cowles (1993, 263) also reports the occurrence of white-tailed sea eagle at Uley and says, however, that it is not an uncommon find on Roman sites. Before it became extinct in Britain, he says, it was found around the coast and inland, close to lakes and rivers.

In the case of the fish remains, clearly some very impressive metre-long pike were present within layers in Phase 2. The lack of cleithrum bones, which in pike is a fairly large bone tending to survive quite well, does tend to suggest that filleting of the fish may have taken place elsewhere. The majority of the fish heads may not have been brought to the site itself, but dumped at the location where caught. This may support the idea of prepared fish being introduced to the site in the form of votive offerings or feast items; the absence of heads makes the latter interpretation the more likely.

The economy and environment of the Roman fen-edge

Before undertaking an overall comparison of the Snow's Farm assemblage with other published faunal assemblages from Romano-Celtic shrines and temples, let us consider firstly the economy and environment of the Roman fen-edge, as well as the background to the immediately preceding period.

A distinctive characteristic of Iron Age animal exploitation was that animals were generally killed when they were mature and after they had already fulfilled their other economic functions (Grant 1989a). Although some animals were killed at the optimum time for meat (at the onset of maturity or adulthood), others were kept longer to exploit them for draught purposes or to produce wool. Exceptions to this included pigs, which might be killed at a young age, as well as sick or diseased animals which might also be slaughtered young. Some of the surplus new-born animals might be killed off in the spring, whilst no longer productive adults might be slaughtered before winter arrived and before it became necessary to provide supplementary feed for them, in order to optimise the herd level (Grant 1984a). Such a strategy would have been a regular part of the annual cycle, and undoubtedly spring and autumn culling of herds would have tied in with ceremonies celebrating the beginning or end of the agricultural cycle.

Nodde (1984) has carried out a study of ten multi-period Iron Age and Romano-British sites. She identified a trend for an increase in cattle through time, balanced by a decline in sheep. Certainly at the Snow's Farm site there is a continued interest in the use of cattle skulls between Shrines 1 and 2, but sheep still comprise the most frequent remains.

What about the situation in the local region? Estates or farms in the region probably practised a mixed self-sufficient economy. Cereal would have been cultivated on the relatively light and fertile soils of the chalky upland, the fens providing lush meadow for animal pasture (at least during the summer, when not flooded), as well as fish, eels, wildfowl, reed and peat (Gurney 1986). Faunal assemblages that have been studied in the central Fenlands suggest that settlements practised an intensive stock economy (Potter 1981). Sheep are consistently the most important livestock (40–70%), followed by cattle (22–45%), with pigs (3–6%) and horses (3–12%). Most sheep appear to have been raised into their second or third years, suggesting that they may have been kept primarily for their wool (Potter 1981). Analysis of the Snow's Farm shrines bone assemblage revealed that the relative proportions of the major species were broadly similar to those known from the settlements of the central Fenlands. The only obvious difference was that pigs were the next most frequent species represented in terms of the numbers of identified diagnostic bones. Although pigs were overall numerically more frequent than cattle, it is interesting to note that this situation was reversed in the case of the quantities of votive remains (Table 7.7). If we calculate the relative proportions of the major domestic species only from the special (votive) deposits, then sheep form 75%, cattle 21% and pig 4%, matching well with the already published faunal assemblages from settlements in the region (as well as with the Iron Age material from the nearby HAD V enclosure: Serjeantson this volume).
Comparison with other Romano-Celtic shrines and temples

Until recently environmental evidence has been largely overlooked but temple areas are often rich in faunal remains which may be relevant to the interpretation of the site ... (Ebbatson 1998).

This quotation comes from an English Heritage on-line report written in 1998 summarizing the evidence for Romano-Celtic shrines and temples within England. Animal bones occur in ritual and non-ritual contexts on many shrine and temple sites in Britain, but rarely in sufficiently large assemblages to permit detailed analysis, with the exception of the Romano-British temples at Harlow (Legge & Dorrington 1985) and Uley (Levitan 1993). This may partly be due to the fact that previous excavations have tended to concentrate too much on the main temple building whilst ignoring the temenos (John Magilton pers. comm.). All too often in the past temples have suffered from ill-conceived trenching (for their plan alone) and over-hasty clearance, with the result that detailed knowledge about deposits/phases of activity with the temple has been distinctly lacking (Rodwell 1980a,b,c). Failure to identify special deposits (whole/partial animal bodies) in earlier excavations may simply reflect the assumption of the archaeologist that any animal bones encountered merely represent the waste remains of food and nothing more (Wait 1985, 125).

Animal remains found within temples are not necessarily the result of normal, economically motivated practices of exploiting domestic animals. There may be too few animals represented to be the result of everyday or even annual activities, and in any case, special animal deposits need not accurately represent the general animal population around the site. Indeed, there has been some speculation that some temples may have kept their own flocks of sacrificial beasts which worshippers could purchase for slaughter (John Magilton pers. comm.), although presumably this would only be feasible at larger or important temples where there might be sufficient demand.

Table 7.25 summarizes the bulk of the evidence which exists for animal bone assemblages from other Romano-Celtic shrines and temples in Britain. An attempt was also made to search for iconographic evidence of animals associated with such sites. A total of 25 published sites were identified which fulfilled at least one of the above criteria. The sites were all predominantly located in the southeast of England. The problem in establishing parallels between deposits from different temples is that to a certain extent each particular temple is unique. Romano-Celtic temples usually appear to be dedicated to one or two primary deities, but many other minor deities may also be honoured. In some more rural or isolated areas the local Iron Age belief may continue in the region. For example, at the temple at Hayling Island pigs predominated from the Iron Age through to the Roman levels (Downey et al. 1980; King & Soffe 1999).

Close parallels to the deposition of whole and partial animal bodies found at the Snow's Farm shrines may be found in the temples of Brigstock in Northamptonshire (Greenfield 1963) and Sawbench in Norfolk (Phillips 1970, 206). Evans (1984) has suggested that the Willingham Fen hoard may be associated with the Snow's Farm shrine, and this hoard includes at least three statuettes of helmeted riders on their mounts. If this association is correct then there are obvious parallels between this site and Brigstock, both sites having sheep/goat mandible deposits with coins along with lower limb-bones and statuettes of mounted warriors (Gurney 1986, 92).

Let us now compare the evidence from the other Romano-Celtic shrines by looking at each of the animals which are represented in the Snow's Farm shrines.

Sheep: Green in her survey Animals in Celtic Life and Myth reported that:

... As far as evidence allows us to judge, sheep were of secondary significance as cult-offerings compared to their crucial importance in the economy. They are consistently present in sanctuaries, tombs and other ritual contexts, but in terms of real numbers they take second place to pigs and sometimes to cattle as well ... (1992, 124).

In actual fact, a number of Romano-Celtic sites contain sheep votive deposits. This includes the present site as well as the published assemblages from Harlow (Legge & Dorrington 1985) and Uley (Levitan 1993).

All these sites had abundant remains of sheep and goats. A number of other sites also have smaller quantities of oviscaprid material. These will briefly be mentioned below. A common feature of many of these sites is the preference for younger animals in the deposits.

At the Romano-British temple at Harlow in Essex, most of the oviscaprids belonged to sheep, which dominated the assemblage in the Belgic and Temple phases (1–2); pig, then cattle, being the next most frequent species. Although it is reported that no evidence of a votive offering in the form of whole or part carcasses was found, it is noted that a shallow
<table>
<thead>
<tr>
<th>Locality</th>
<th>County</th>
<th>Species present</th>
<th>Context</th>
<th>Sheep/Goat mandibles + coin association</th>
<th>Particular anatomical deposits</th>
<th>Sheep/Goat mortality profile</th>
<th>Notes</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bekesbourne</td>
<td>Kent</td>
<td>Horse</td>
<td>Ritual pit with complete pots, and below = flat stone with circle of horse teeth arranged on it</td>
<td>Present</td>
<td>Present</td>
<td></td>
<td>Mentions bones of young sheep/goat (F14)</td>
<td>Green 1986, 172-3</td>
</tr>
<tr>
<td>Bourton Grounds</td>
<td>Bucks.</td>
<td>Horse</td>
<td>Rectangular 3rd c. AD basilical building (close to a Romano-Celtic temple) with horse bones buried under threshold: ?foundation offering</td>
<td>Present</td>
<td>ind. lower limb/hoof deposit</td>
<td></td>
<td></td>
<td>Green 1992, 115</td>
</tr>
<tr>
<td>Carrawburgh, Hexham (Brocolitia, Hadrians Wall)</td>
<td>Northumbria</td>
<td>?main domestic species</td>
<td>?main domestic species</td>
<td>Present</td>
<td>Present</td>
<td></td>
<td></td>
<td>Richmond & Gillam 1951</td>
</tr>
<tr>
<td>Chanctonbury Ring, Wiston</td>
<td>West Sussex</td>
<td>?main domestic species</td>
<td>TPIV, Layer 24(a); Romano-Celtic temple incl. 45 ?ritual shafts</td>
<td>Present</td>
<td>Present</td>
<td></td>
<td></td>
<td>Bedwin 1980</td>
</tr>
<tr>
<td>Great Chesterford</td>
<td>Essex</td>
<td>Sheep/Goat, Cattle, Dog and Bird</td>
<td>Square Romano-Celtic temple</td>
<td>Present</td>
<td>Present</td>
<td></td>
<td></td>
<td>Bedwin 1991; Legge pers. comm.</td>
</tr>
<tr>
<td>Harlow</td>
<td>Essex</td>
<td>Horse, Pig, Sheep/Goat (mostly Sheep), Dog, Roe deer, Hare, Bird incl. Domestic Fowl</td>
<td>Iron Age phases have no cattle bones, only a few specimens from zones outside the temple enclosure</td>
<td>‘for sheep, mandibles and upper limb bones were most common, while horncores and phalanges were rare’</td>
<td>‘for pigs, mandibles and maxillas were most common, followed by upper limb bones, while lower extremeties were rare’</td>
<td>shrine dedicated to a celtic Mars-type deity</td>
<td>Downey et al. 1980; King & Soffe 1999</td>
<td></td>
</tr>
<tr>
<td>Hayling Island</td>
<td>Hants.</td>
<td>Pigs (41%) & Sheep (59%) (Iron Age-Roman levels): N = 2395</td>
<td>Iron Age phases have no cattle bones, only a few specimens from zones outside the temple enclosure</td>
<td>‘for sheep, mandibles and upper limb bones were most common, while horncores and phalanges were rare’</td>
<td>‘for pigs, mandibles and maxillas were most common, followed by upper limb bones, while lower extremeties were rare’</td>
<td>shrine dedicated to a celtic Mars-type deity</td>
<td>Downey et al. 1980; King & Soffe 1999</td>
<td></td>
</tr>
<tr>
<td>Henley Wood, Yalton</td>
<td>Somerset</td>
<td>Sheep, Bird</td>
<td>Romano-Celtic temple with sheep burials found beneath slab floor of the ambulatory on 3 sides</td>
<td>Present</td>
<td>Present</td>
<td></td>
<td></td>
<td>Watts & Leach 1996</td>
</tr>
</tbody>
</table>
Table 7.25. (continued).

<table>
<thead>
<tr>
<th>Locality</th>
<th>County</th>
<th>Species present</th>
<th>Context</th>
<th>Sheep/Goat mandibles + coin association</th>
<th>Particular anatomical deposits</th>
<th>Sheep/Goat mortality profile</th>
<th>Notes</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hockwold-cum-Wilton</td>
<td>Norfolk</td>
<td>Horse, Cattle, Pig, Sheep/Goat, Dog, Red deer, Domestic Fowl, and Goose</td>
<td>At foot of each brick column base = ritual deposit of pig and bird bones, incl. domestic fowl. Pit 99 basil fill from a settlement with an important religious element</td>
<td>? Coins associated with bird skeletons</td>
<td></td>
<td></td>
<td></td>
<td>Green 1976, 212</td>
</tr>
<tr>
<td>Jordan Hill</td>
<td>Dorset</td>
<td>Hare + Bird skeletons (Raven or Crow, Buzzard and Starling)</td>
<td>Ritual well in south corner of a Romano-Celtic temple within which = alternating succession of tiles, bird skeletons, coins and ashes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Green 1985, 175-86; Ross 1968, 225-85</td>
</tr>
<tr>
<td>Lamyatt Beacon</td>
<td>Somerset</td>
<td>Main domestic species</td>
<td>Romano-Celtic temple of late 3rd century, in use into early 5th; square with two annexe and a sunken room. Finds incl. many votive objects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Leech 1986</td>
</tr>
<tr>
<td>Lydney</td>
<td>Glos</td>
<td>'Dog'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Green 1986, 178; Wheeler 1932</td>
</tr>
<tr>
<td>Munsham Court</td>
<td>Sussex</td>
<td>Horse, Cattle, Dog, Red deer, Hare, Domestic Fowl</td>
<td>Round Roman temple. 2 shallow pits in floor had cattle skulls + bones. Several dog skeletons = cast into a deep well near a circular shrine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Green 1986, 176</td>
</tr>
<tr>
<td>Nettleton</td>
<td>Wilts</td>
<td>Horse, Cattle, Pig, Sheep/Goat, Red deer, Bird incl. Goose</td>
<td>Most of the bones probably associated with post-shrine homestead altho' = unclear</td>
<td>'a curiously high proportion of fore-limb bones' (re: sheep bones)</td>
<td></td>
<td>'high percentage of immature bones'</td>
<td>?Shrine dedicated to Apollo</td>
<td>Hall 1982</td>
</tr>
<tr>
<td>Snows Farm Shrine</td>
<td>Cambs</td>
<td>Horse, Cattle, Pig, Sheep/Goat, Dog, Cat, Deer, Folecat</td>
<td>Sheep/Goat mandibles incl. lower limb/ hoof deposit = peaks at 6-9 months and 18+ months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beech 1987; and this report</td>
</tr>
<tr>
<td>South Cadbury Castle</td>
<td>Somerset</td>
<td>Cattle, Pig, Sheep/Goat, Bird</td>
<td>Narrow zone besides approach to shrine, bounded on south by a wooden fence: about 20 burials of young domestic animals (mostly newborn calves, a few pigs and some lambs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alcock 1972</td>
</tr>
<tr>
<td>Locality</td>
<td>County</td>
<td>Species present</td>
<td>Context</td>
<td>Sheep/Goat mandibles + coin association</td>
<td>Particular anatomical deposits</td>
<td>Sheep/Goat mortality profile</td>
<td>Notes</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>-----------------</td>
<td>--</td>
<td>---</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Springhead, Kent</td>
<td></td>
<td></td>
<td>2 animal burials ?Temple VII had 2 animal burials in a votive pit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Green 1976, 33; MacDonald 1964</td>
</tr>
<tr>
<td>Southfleet, nr. Gravesend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Evans pers. comm; Green 1986, 185</td>
</tr>
<tr>
<td>Thistleton Dyer, Cambs nr. Haddenham</td>
<td></td>
<td>Hare, Bird</td>
<td>Bird Bone deposit at back of temple</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ellison 1977; 1980; Levitan 1982; 1993; Woodward & Leach 1993</td>
</tr>
<tr>
<td>Uley, Glos.</td>
<td></td>
<td>Sheep/Goat (mostly goat), Cattle, Pig, Horse, Dog, Red + Roe deer, Domestic Fowl, other Bird, Fish</td>
<td>Phase 4a room C: mandibles, vertebrae, metapodia & phalanges abundant. Extremities = well represented in all of phase 4a</td>
<td>Structure I: cranial bones + extremities in rooms C & E</td>
<td>?autumn sacrifice, peaks at 6 mths, 18 mths, 2.5 yrs & 3.5 yrs</td>
<td>Site perhaps connected with the worship of Mercury (goat, ram & cockerel association)</td>
<td></td>
<td>Stead & Rigby 1989; Wheeler & Wheeler 1936</td>
</tr>
<tr>
<td>Verulamium, Herts</td>
<td></td>
<td>Cattle skull</td>
<td>Southern part of Romano-Celtic temple behind the theatre, from covered corridor enclosing a courtyard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nicolaysen 1994, 161–3</td>
</tr>
<tr>
<td>Wanborough, Surrey</td>
<td></td>
<td>Horse, Cattle, Pig, Sheep/Goat, Dog, Red deer, Domestic Fowl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nicolaysen 1994, 161–3</td>
</tr>
<tr>
<td>Wroxeter, Shropshire</td>
<td></td>
<td>Domestic animals incl. Dog</td>
<td>Iron Age religious site associated with a sacred pond</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Angel 1982, 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cattle, Sheep</td>
<td>The classical temple had a deposit of cattle and sheep bones placed in a pot under the SE angle of the ambulatory wall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Meddens 1987</td>
</tr>
</tbody>
</table>
It is noted that at the shrines at Brigstock in Northamptonshire, a shallow pit within the circular shrine (F.14) included young sheep/goat bones including lower limb/hoof deposits (Greenfield 1963). At Hayling Island in Hampshire, sheep represented 59 per cent of all identified fragments. Sheep mandibles and upper limb bones were the most common elements, whilst horns and phalanges were rare (King & Soffe 1999). At Henley Wood in Somerset, a Romano-Celtic temple was identified which had sheep burials beneath the slab floor of the ambulatory (Watts & Leach 1996). At Nettleton in Wiltshire, most of the bones are probably associated with the post-shrine farmstead, although it is noted that there was a high percentage of immature sheep bones and a curiously high proportion of fore-limb bones (Hall 1982). At South Cadbury in Somerset, the narrow zone beside the approach to the shrine included burials of some lambs (Alcock 1972). At Wanborough in Surrey, although it is noted that there is no evidence for votive offerings in the form of whole or part carcasses, within the small sample reported upon there is a fairly high proportion of jaws and feet and lower limb bones (Nicolaesjen 1994, 162). At Wroxeter in Shropshire, the classical temple had a deposit of cattle and sheep bones placed in a pot under the southeast angle of the ambulatory wall (Meddens 1987).

Sheep skulls were cast into wells in both the Iron Age and Romano-Celtic periods (Grant 1989b). Although sheep were the most important animals in economic terms at Danebury they rarely occurred as special pit-deposits. One pit though did contain what was interpreted as a complete sheepskin with its lower limbs still attached. A further pit at Danebury had two sheep and a domestic cat within it (Grant 1984a).

Pig: The most important wild animals for the Celts were apparently the boar and the stag. We know from Strabo that the Celts especially ate both fresh and salted pork. A number of religious sites during the Romano-Celtic period provide evidence of pig rituals. Boar tusks were found together with antlers and over a hundred pots in the Ashill ritual shaft in Norfolk (Green 1986, 181; Ross 1968, 258). At Briggstock in Northamptonshire, pig remains were found in shallow pits within the circular shrine (by E.19 and E.21), at the centre of the shrine floor and near the entrance (Greenfield 1963, 231, fig. 2). Pig bones occurred at Harlow, where half of the bones and teeth were from adult or near-adult animals (Legge & Dorrington 1985, 127). It is reported that at Chelmsford a young boar was buried as a possible foundation offering (Goodburn 1976, 342). At Hayling Island, pig bones formed 41 per cent of the assemblage (Downey et
Cattle: There are a number of sites in Britain which have clear evidence of ritual deposits associated with cattle. Several shrines had associated cattle burials, including Briggstock, Caerwent, Muntham Court, Verulanium, and Wroxeter (Green 1976, 163, 181, 183, 206, 220). At the subterranean shrine in Cambridge, in the late second–early third century AD, animal rituals involved the burial of a complete horse and bull, as well as hunting dogs (Alexander & Pullinger 2000; Anon. 1978; Green 1986, 178). Earlier sites also provide evidence of cattle rituals. In the Iron Age levels at South Cadbury, newborn calves were set upright in pits, and outside a porch a shrine a burial of an adult cow was discovered (Alcock 1972). One of the other small sanctuaries at the site was associated with six pits containing horse and cattle skulls. A third sacred building had an ‘avenue’ leading towards it with burials of young animals, including calves. The Iron Age structure at Uley, a precursor of the later Roman shrine, was associated with a group of iron spears and an articulated cow limb (Levitan 1993; Wait 1985, 166–90).

In Phase 2 at Uley, which dates to the early first century AD, a number of cattle deposits were identified which seem similar to those in the Snow’s Farm shrines. Fragmentary cattle skulls were recovered ([836], [847] & [842], iiiid and iiiie) as well as a partially complete cattle skull ([848], iiiib). In the same phase, one pit contained the articulated remains of a cattle hind-limb (F.251). Cattle at Uley were generally represented by a mixture of all parts of the anatomy, suggesting a mixture of butchery activities ranging from primary stages (e.g. skulls, limbs and feet are removed) to the table waste stage (e.g. ribs and upper limb fragments). Most cattle at Uley were sub-adult and adult, with a slight emphasis on younger animals in Phases 2–4, and on older animals in Phases 5–7.

Dogs and Horses: At Danebury, whilst sheep were the most important animals in economic terms, they occur very rarely as special pit-deposits. In contrast, dogs and horses occurred relatively frequently and were sometimes even interred together. It has been pointed out by both Grant and Green that there appears to be a statistically significant association between dogs and horses (Grant 1991; Green 1992, 112). The majority of these horses buried in pits have no butchery traces to their bones, although horses were occasionally eaten on settlement sites. Grant has suggested that such animals may have been deliberately selected as special offerings to the gods precisely because they were less significant as food animals (Grant 1984b, 1991).

At Bekesbourne in Kent, a ritual pit with complete pots contained a flat stone with a circle of horse teeth arranged on it. Horses were buried, perhaps as foundation-offerings, at the basilical shrine at Bourton Ground in Buckinghamshire (Green 1992, 115). At the sunken shrine in Cambridge, a horse and dogs were found buried together (Anon. 1978). Dogs often seem to be associated with sacred sites which have an aquatic connection, even going back into the Bronze Age (e.g. Flag Fen: Pryor 1990, 2001). Fragments of at least 15 dogs were found at the aforementioned site of Gournay in France. These largely consisted of mandibles, perhaps suggesting a interest in skulls. At Muntham Court in Sussex, several dog skeletons were deposited in a deep well near a circular shrine (Green 1986, 176). One of the shrines at South Cadbury was associated with pits containing horse and cattle skulls which were carefully buried the right way up (Alcock 1972, 136–33; Green 1986, 172; Wait 1985, 166–90). A dog-tooth necklace was found in a ditch in close proximity to the gatehouse.
vicinity to a horse at the religious Iron Age site at Ivy Chimneys in Witham (Essex), associated with a sacred pond (Turner 1982, 15). The presence of horse was also noted at Harlow, Hockwold-cum-Wilton, Nettleton, Uley and Wanborough.

Other evidence for the importance of dogs comes from Lydney in Gloucestershire, where nine dog iconographic images connected with the god of hunting and healing, Nodens, were discovered (Green 1986, 175; Wheeler 1932). In addition, at the site of Springhead in Kent, a bronze dog was discovered in the temple which also had two animal burials in a votive pit (Green 1976, 33; Macdonald 1964).

Deer: Stags also played an important role in Romano-Celtic iconography. Stag depictions occur at a number of sites, and deer bones have been recovered from several excavations. Deer are probably the most common wild animal represented in British ritual pits (Grant 1989b). In this present brief survey it was noted that red deer occurred at Harlow, Hockwold-cum-Wilton, Weymouth, Dorset, in small quantities. The presence of roe deer was also mentioned at Harlow.

Other animals, including birds and fish: The presence of hare is mentioned at Harlow in Essex and Jordan Hill in Dorset (Green 1986, 175–6; Ross 1968, 255–85). Hares incidentally are mentioned in the classical sources as a sacrifice to the British war-goddess Andraste. Shafts and wells were also sites which had special deposits during the Iron Age and Romano-British period. It has been noted that bird deposits seem important in Iron Age shafts (Green 1992, 104). Birds are mentioned at the following sites: Brigstock, Great Chesterford, Harlow, Henley Wood, Hockwold-cum-Wilton, Jordan Hill, Muntham Court, Nettleton, Sawbenge, Thistleton Dyer, Uley and Wanborough (Table 7.25). Domestic fowl was usually the most common species represented, although a number of other interesting bird deposits occurred. There was an association of bird and pig bones at Hockwold, already mentioned above. At Jordan Hill, Weymouth, Dorset, a ritual well in the southeast corner of a Romano-Celtic temple contained an alternating succession of layers of tiles, bird skeletons (raven/crow, buzzard and starling), coins and ashes (Green 1986, 175–6, 184; Ross 1968, 255–85). At Thistleton Dyer, located not far from the Snow's Farm site, there was a bird-bone deposit placed at the back of the temple (Evans pers. comm.; Green 1986, 185). At Uley, the bird bone assemblage was dominated by domestic fowl (Brothwell 1997; Gowles 1993; Levitan 1993) and the site was seemingly occupied by practitioners of a cult involving the worship of Mercury, and his associates, the goat, ram and cockerel (Ellison 1977, 1980; Woodward & Leach 1993). The other birds present at Uley, including white-tailed sea eagle, are presumed to be largely non-votive deposits. At Winklebury in Hampshire, a raven was buried together with a pig (Wait 1985, 122–53).

There is little mention of fish bones at almost any Romano-Celtic shrine or temple. Unfortunately, in many cases this is probably due to inappropriate recovery methods and the lack of sampling and sieving during excavation. Uley is the only published site with a detailed report on fish remains (Wheeler 1993). The following fishes were identified: flounder (Platichthys flesus), flatfish family (Pleuronectidae), perch family (Percidae), grey mullet (Mugilidae), bass (Dicentrarchus labrax), red sea-bream (Pagellus bogaraveo), salmon/trout (Salmo sp.) and freshwater eel (Anguilla anguilla). No pike was present, which was the most common fish represented at the Snow's Farm shrines. Almost all the fish at Uley were probably caught locally in the River Frome and some possibly from the Severn. The presence of the red sea-bream, however, suggests trade with some area towards the open sea, and the fish must have been deliberately imported to the site (Wheeler 1993, 265). The fish remains at the Snow's Farm shrines similarly were probably derived from local sources, although the elemental distribution discussed earlier does perhaps indicate that fish may have also been introduced to the site from elsewhere.

Conclusion
Analysis of the vertebrate fauna from the Snow's Farm shrines has demonstrated the nature of sacrificial activities taking place at the shrine. It has also provided valuable evidence with regard to the exploitation of wild species from the surrounding fen-edge environment. In general, there has been very little research undertaken on the religious sites of Roman Britain. The only previous studies of substance are those of Lewis (1966) and Rodwell (1980b), and they do little more than occasionally to mention the presence of animal bones within temples. The more recent publications of Harlow (Legge & Dorrington 1985) and Uley (Levitan 1993), and now the Snow's Farm shrines, provide much more detailed information than has previously been available concerning ritual practices. The advent of more careful excavation techniques to new temple sites, such as here, will undoubtedly recover further detailed knowledge with regard to the activities taking place within them. Our picture of Romano-Celtic worship on the fen-edge still remains somewhat sketchy, although there is now a growing body of data to which the Snow's Farm shrine has greatly contributed. Although too lit-
Sheep sacrifice among the Gurung/Tamu-mai of Nepal
by J. PETTIGREW & PACHYU CHEA (Head Shaman) YABUNG K.
TAMU

For the Tamu-mai (Gurung) of west central Nepal, the most important community-wide ritual and social events are those which surround death. While the dead are buried as soon as their kin have gathered the process is incomplete until the major death ritual (the three-day pwe laha) has been conducted. This shamanic ritual has as its primary purpose the sending of the soul of the deceased to the Afterworld. A pwe involves numerous sub-rituals, some of which can be interpreted as 'journeys'. As a pwe is a very expensive event to host it may take place many years following death. If it is not conducted the deceased remains in a liminal state, cannot become an ancestor, and, in the form of a wengeful spirit, can cause the living much pain and suffering.

On the first night of the pwe the shamans invite the ancestors to attend, and provide a 'route' along which the soul of the dead person can travel to the ritual. On the second day the shamans separate the soul from the 'misfortune' (Iblness, accident, etc.) which caused their demise. An effigy of the deceased is constructed and a series of ritual events ensue to 'send' the soul in the pwe. The final day is devoted to 'sending' the deceased to the Afterworld. This involves a series of ritual journeys: the pachyu journey of the pachyu shaman, the deceased and its female kin up the metaphorical trail to the Afterworld and the phe laha (preparing the effigy to be dismantled) journey of the kohi shaman. In between these shaman-guided journeys occurs a journey which has its roots in the age-old relationship between the Tamu-mai and the animals with which they have been the most historically and intimately associated: sheep. While these links were formed in the past (today few people own sheep), they are retained symbolically and emotionally in conscious memory, and re-enacted in the pwe.

At the conclusion of the pachyu journey the soul is transferred from the effigy into the body of a sheep (kohi kyu, 'representative of the dead person sheep'). As this vignette illustrates, the koh kyu is feasted and then sacrificed.

Although the soul is imparted to the sheep, it does not carry the deceased to the Afterworld (a sheep cannot carry a human; it can only act as a 'friend'). Human and sheep souls travel together in a companionship similar to the one they enjoyed in life, and as on the long journeys of the past across the Himalayas, the sheep carries the human's provisions. The importance placed in life on having a travelling companion is replicated in death as the koh kyu is also provided with a 'friend' (thu kyu) for the journey. The thu kyu has the additional role of carrying messages to the ancestors. For example, it tells the ancestors how much the pwe has cost and asks for production of the family's wealth and assistance with repaying some of the cost of hosting the ritual.

The koh kyu and thu kyu must be sacrificed as their souls have been sent to 'heaven' along with the souls of the deceased and they are therefore soul-less. If they are not sacrificed, as soul-less beings they will bring misfortune to the pwe family and their affines. Following the sacrifice the meat is divided into nine parts and given to nine categories of people, including the wife-givers, the wife-receivers, sisters and daughters-in-law, shamans and various categories of assistants involved in the organization of the pwe, such as the cooks and those who fetch water. The deceased's family must not eat this meat, as it would be like 'eating your relative'.

Figure 7.36. Lankachhar 1992. The women file into the courtyard holding plates and trays of food, lhe (bread), biscuits, meat, pah (millet wine), spicy cooked vegetables. They sit on the ground in a rectangle, behind their offerings. They are dressed in their best clothes: tartan kramu stands, brightly coloured lungs and gold jewellery (except for immediate kin who are in mourning). The centre of the rectangle is unoccupied, a space for the guests. It has the appearance of the feast and it is a feast, for sheep. The sheep are herded in: four, one to represent each dead person; the fourth, a friend. The women identify 'their' sheep, the one which represents their dead relative. They entice it to eat, offering it its favourite food, forcing it to eat when it shows no interest; for they know that eating is the confirmation that the deceased has entered the sheep's body. A woman cries and clings to her 'mother'. One of the other sheep 'shakes' and relatives reach out to take a tuft of wool which they put either behind their ears or on top of their heads as 'blessings'. After about 15 minutes and after each sheep has 'eaten' at least three times (indicating the acceptance of the sacrifice by the Otherworld) they are led away, to 'heaven' (Pettigrew 1995, 158). (Photograph by J. Pettigrew.)
such animals may have acted partly as symbols of their pastoral wealth. The bone assemblage from the Snow’s Farm shrines is extremely important. It has provided a unique opportunity to view Romano-Celtic shrines on the Roman fen-edge, and provokes new questions about the precise nature of the relationship between domestic and ritual spheres.

A note concerning plant remains

On-site processing was undertaken with samples taken from all major features. Although macroscopically appearing to be of negative value, the residues from the samples were submitted to Dr G. Jones for further examination. However scanning of this material only showed, aside from three indeterminate wheat grains (from [580] and [702]) and few seeds from wild plants (Calamin sp., Atriplex sp. and Carex sp.; all from [692]), the remains of recently derived field seeds and further analysis was not felt to be warranted. Given, otherwise, the abundance of animal remains and evidence of feasting, the paucity of charred plants would either suggest that such ‘stuffs’ did not feature in the shrine’s rituals or, and more likely, that cereals were brought into its precinct fully processed (as ?bread).

The Roman pottery

by G. LUCAS

A substantial assemblage of Roman pottery was recovered from the site (2639 sherds, c. 37.7 kg) with very tight spatial control. The pottery was recorded by grid square and context on proforma sheets; for each sherd group, fabric type, vessel parts, forms, sherd count, weight, radius (of bases and rims), Eves (based on the percentage of rim present) and general condition were noted with comments if any on the assemblage as a whole (e.g. date). Fabric types were defined and sorted both by eye and with regular use of x20 magnification hand lens; key characteristics noted were hardness, colour, fracture, inclusions and surface treatment. Descriptions of the fabric follow a certain order:

i) Nomenclature. Fabric groups are referred to by a common name; standard names are used which usually refers to the source while unsourced fabrics are primarily named after their surface appearance, i.e. greywares, etc.

ii) Colour. The core colour is described first, and then margins (if any) and the surfaces. Descriptions are based on subjective criteria.

iii) Hardness. Based on a standard scale of soft, hard and very hard (e.g. see Orton et al., 1993, 233).

iv) Fracture. Always based on a fresh break, and again following a standard of subconchoidal, smooth, fine, irregular, hackly and laminated (Orton et al., 1993, 235).

v) Inclusions. The most prominent inclusions to the naked eye have been given first; these may not necessarily be the most common, but usually they are. Any other inclusions follow. Identification of inclusions was aided by Peacock’s algorithm (reproduced in Orton et al., 1993, 236–7). Description of inclusions includes density, sorting (if in appreciable quantity), shape and size using the visual aid charts of Wessex Archaeology:

- density: rare = 1–3%, sparse = 3–10%, moderate = 10–20%, common = 20–30%, very common =30–40%, abundant = 40–50%.
- shape: A = angular, SA = subangular, SR = subrounded, R = rounded.
- size: very fine =<0.1 mm, fine = 0.1–0.25 mm, medium = 0.25–0.5 mm, coarse = 0.5–1.0 mm, very coarse =10 mm.

vi) Method of manufacture: handmade, wheel-finished or wheel-thrown.

vii) Surface treatment: various, e.g. burnished, slipped, colour-coated.

The fabric type series

Imports

Samian

Principally Central Gaulish wares were identified although there were possibly some sherds from Eastern Gaul.

Amphorae

South Spain (Baetica)

Buff-pink; slightly soft with an irregular/laminar fracture and common quartz and felspar (SA 0.25–0.5 mm); other inclusions: rare red and black grit and limestone (SA 0.25–0.5 mm) and mica (<0.2 mm). Globular Dressel 20 form, used for the transport of olive oil (Peacock & Williams 1986, 136–41).

Mortaria

Camb. Red-slippled (TNV)

Pink-buff; slightly soft with a smooth fracture; moderate fine quartz (<0.1 mm) with occasional red grog; sub-angular quartz trituration. Wheel-thrown and, with reddish-brown slip. Unusual fabric but Nene Valley forms (i.e. reeded mortaria).

Mancetter-Harshill

White (sometimes with pinkish core); hard with a sub-conchoidal fracture and sparse translucent quartz (SA 0.1–0.25 mm). Wheel-thrown with red-brown grog trituration (Hartley 1993, 392).

Nene Valley

White; hard with a fine fracture and common quartz (SA <0.1 mm); other inclusions: rare grog (SA 0.1–0.25 mm), quartz (SR 0.25–0.5 mm), red ironstone (<0.1 mm) and limestone (SA 0.1–0.25 mm). Wheel-thrown and self-slipped with black ironstone trituration (Howe et al. 1980, 10).
and particularly bowls, while the latter have a stronger representation of jars and particularly flagons. It is not obvious what this could indicate, but one possibility is that more emphasis is given to the serving of food at the former and drink at the latter. This difference may also tie in with the degree of Romanization of activities for the former are both small rural shrines while of the latter, Uley is a high-status temple complex and Great Dunmow lies within a small town.

The difference may also relate to an interpretation of the Romano-British ritual use of prehistoric monuments. Perhaps such activities were 'unofficial' forms of religion and more akin to superstition rather than orthodox religious beliefs (Dark 1993). Either way, the difference may relate to the degree of Romanization. If the patterns hold, it suggests that activities at the Haddenham 'shrine' placed greater emphasis on both eating and drinking than more Romanized or classical religious activities as seen on other sites, and which in turn may also reflect a less Romanized ritual activity. It may be that the nature of the offerings taking place are rather different, in that less Romanized rituals involve the participants consuming food and drink as part of the votive process while more Romanized ceremonies focused on acts of presentation.

Discussion: transformation and sacrifice

With its sequence of shrine construction and accompanying animal sacrifice, lying at the heart of this complex is the character of transformation. This relates both to changes in both architectural form and all that is implied in the site's much evident ritual slaughter — the violence of the moment and spirit messengers. These issues demand to be considered as the site's core themes and not just backgrounded in favour of formal architectural study or detailed artefact typologies. The site, in effect, turns on 'world-centring' moments of sacrifice.

Phasing and dating evidence

The vast majority of the site's finds were recovered from the 'muddy' surface deposits immediately east of the octagonal shrine and extended south into the adjacent fills of the main compound ditch and along the 'Avenue's' ditches. This presents interpretative problems as the site essentially consists of 'open' deposits with few closed contexts by which to establish a firm dating sequence and, therefore, distributional correlates must be relied upon.

In many respects the shrine's sequence challenges precepts concerning deposition and architectural 'robustness'. It is frequently assumed that there is a direct relationship between the two engendered by concepts of 'wealth' (i.e. substantive structural remains correlate with an intensity of consumption/deposition). Yet, as a shrine context, such normative logic need not apply. (Of course, its corollary, equating the 'insubstantial' with squalor, must also be avoided.) Key to these arguments is the status of the midden directly situated in front of the doorway to Shrine 1. Most telling is that it seems to have been deposited in relation to the timber post-line associated with the later and much less substantial secondary shrine(s). The secondary status of the midden deposits (aside from the fact that it is unlikely to have 'fronted' a formal shrine) is demonstrated by the fact that it showed little sign of trample, as it would if contemporary with the primary shrine and when the compound was accessed from the southeast corner. Instead, filling the hollow produced from Shrine 1 movement, it lay in the 'back-space' of Shrine 2(B) whose entrance seems to have been gained from the north.

Although probably incorporating much Phase 1 material (and possibly comprising the majority of its matrix), accepting the midden's secondary status has
implications concerning changing practices within the shrine sequence inasmuch as there seem to be no equivalent Phase 1 deposits. Of course, a greater intensity of deposition may not directly reflect the frequency of ritual/shrine usage. However, suggestive of the residues of feasting, it may tell of changes in ritual practice. If it does attest to en masse feasting then it could have had a relationship with the more ‘open’ layout of the secondary shrine complex than the original. It may, in fact, also correspond to the varying character of the placed deposits. As discussed below, the complete sheep carcass burials exclusive to Phase 1 contrast with the head-and-hooves placements characteristic of its later use; the latter implying the consumption of the animal’s flesh.

Generally the dates of the pottery and coins concur; starting in the mid second century, deposition ceases by the mid fourth century. However, it is difficult to reconcile their sequences with the demise of Shrine 1 and the advent of the terminal post-built shrine. Taken as a whole, the coins peak in the later third century and, thereafter, decline in number throughout the first half of the fourth century. As discussed by Lucas (see above), the pottery peaks earlier and is only present in negligible quantities in the later third to early fourth century (AD 290-330), and then there is a slight rise in frequency in the last 15-20 years of the complex’s usage. The tail-off in coin-loss also markedly ‘flattens’ between AD 330 and 345 and coincides with the rise in pottery.

The clutch of four second-century AD coins within the interior of the primary shrine (AD 117-161) presumably relates to its foundation in the middle decades of that century. Yet what of the four later third-century coins (AD 260-90) that were also found as a tight group within its interior? One/two of these had been set into the ‘mouth’ of sheep mandibles and generally this group would seem to correlate with the three coins of comparable date found upon the western side of the E:59 shrine footing (AD 260-305). Presuming that coins (like lithics) are not prone to significant displacement through ploughing, the latter could be understood to relate to the shrine’s dismantling. If so, this might well suggest that a number (if not all) of the head-and-hooves deposits only occurred after the building’s destruction, and perhaps only the central foundation deposit of the complete sheep was a primary ‘early’ placed deposit. Similarly, the vessels associated with the E:73 sheep burials in the northwestern corner of the compound are all early and can be dated to the mid-later second century. Even more telling is that, in contrast to the main assemblage, these were all jars. As Lucas argues, their occurrence is typical of more Romanized assemblages and could attest to more formalized practices and direct ‘outside’ influences at the time of the shrine’s establishment. If the primary shrine attracted deposition after its demise as a standing structure (wall stubs/footings left only), this could also explain the fourth-century coins found within its interior and eastern exterior. Given the percentage of the shrine’s floor over which animal deposits occurred (and more may have been lost through ploughing) this would make pragmatic sense, if such a weighted term can be applied to ritual activity. Otherwise, the interior of this evidently quite impressive building would have to be envisaged as reeking with the stench of rotting animal remains (abuzz with swarms of flies) and soft underfoot through subsidence into placed settings. Coinciding with the coin evidence, it is far more plausible to see these as ‘secondary’ activities occurring out-of-doors once the shrine building had been dismantled. (This could have parallels with the Ridgeons Gardens, Cambridge complex, where most of the placed settings seem to have occurred within its destruction horizon; see below.)

Therefore, from the available evidence the establishment of the secondary shrine(s) must be of later third/earlier fourth century date. Presumed to follow shortly, if not immediately, upon the demolition of the primary shrine, what side of the third-/fourth-century divide this rebuilding is allotted to essentially depends on whether one respectively attributes most of the midden’s contents (and therefore the majority of the site’s assemblages) to late-phase feasting or sees the apparent relationship between the midden and the Phase 3 post-range as being coincidental and associates these spreads with the later use of the first shrine. Given the nature of the deposits no absolute determination is possible, and it is an issue directly influenced by precepts concerning architectural correlates of intense consumption/depositional activity.

Of course, given this reasoning an opposing logic could equally prevail. If it is not accepted that the east-of-Shrine 1 spreads reflect middening, and they are instead related entirely to the destruction of the first shrine, then based on the fact that fourth-century coins occur within these deposits (including those of post-AD 330 issue) it could be argued that the octagonal shrine survived until the middle of that century. The later post-hole structures would then have to be aceramic and have had no associated coin-loss. In effect, the Phase 3 layout should then perhaps be better thought of as a memorial to the earlier complex rather than a shrine itself. Certainly any ritual activity associated with it would have to be without depositional correlates. Pushing the final phase of the shrine complex into the later fourth and perhaps even the fifth century, such an interpretation has its attractions and the layout
of the terminal post-built shrine has Saxon parallels (Blair 1995). If advocating such a late dating for its final phase, the coin set in the hollow at the end of the eastern post-line would then either have had to have been curated or picked up on site and placed there at a later date, and the sheep mandible setting by Shrine 2 would represent an archaic practice: essentially a 'folk memory' of earlier ritual deposition. However, given the association of the later third-century AD coin and mandible setting within Shrine 2(B), this seems an unlikely proposition and, in all probability, the terminal post-built structures date to, at least, the first half of the fourth century.

Architectural and depositional parallels
Except inasmuch as it lacked an ambulatory, as a poor rural (ten-edge) version of a 'classic' Romano-Celtic cella the primary shrine generally adheres to the plan of shrine or temple prototypes of the period. Its 'formal' character would, therefore, be consistent with a foundation date in the mid second century AD. Conversely, the final sub-square post-built shrine and associated post range are certainly not directly based on formal Roman models and may relate to a local or 'native' tradition, and Blair has discussed the Snow's Farm site in relationship to Pagan Anglo-Saxon shrines, Iron Age prototypes and circle-and-square settings (1995). Of course, this timber tradition may not have been entirely absent from the primary Roman shrine and could have had expression in the large posts which lined its ditched 'Avenue' approach. If the Shrine 2A setting is of Iron Age date, then the secondary Roman shrine (2B) could represent a direct re-establishment of it and be of remarkably similar layout. Alternatively, if of Roman attribution (then post-dating the octagonal shrine and preceding Shrine 2B) its affinities would certainly lie with the latter. By their character, these two phases of secondary shrine construction could then suggest that the resetting of the timber ranges may itself have been a part of ceremonies and their erection was as much an act of social ritual as the gatherings they framed.

Although the Snow's Farm complex is the only definite instance of a 'formal' Roman shrine on a Bronze Age barrow, there have been other instances where barrows have been re-invested. The most obvious is Slone Hill, Sussex, where a square fenced enclosure was superimposed upon an earlier monument, though there is debate as to whether this redefinition should be dated by the fourth-century sherds in its post-holes and upper barrow ditch fill or the Anglo-Saxon burial within its interior (Fig. 7.46; Hartridge 1978; Blair 1995, 16). Similarly, at Yeavering a stone circle or hengiform was cleared for the erection of another square fence setting in late/sub-Roman times and was used as the site of a cremation and inhumation cemetery until the Anglo-Saxon period (Hope-Taylor 1977, 95–118; Blair 1995, 16–17). In both these instances the later square timber settings were centrally situated upon the earlier monument and were clearly laid-out in intentional reference to them. Within the Fenland region other compound-enclosed barrows, possibly relating to Romano-Celtic shrines, include Honey Hill, Chatteris and Thorney, Eye. These are, however, as yet unexcavated.

At the time of excavation, searching for shrine parallels one had to look for broad regional affinities: Harlow (France & Golbe 1985), the unusual complex excavated by Alexander at Ridgeon Gardens in Cambridge (Alexander & Pullinger 2000) and Green's (1989) Godmanchester sites, of which published details were unavailable. Since then there has been much more local context with Pryor's excavation of the shrine at Maxey (Fig. 7.47:4; Pryor & French 1985) and Jackson & Potter's Stonea (Fig. 7.47:3, Jackson & Potter 1996). Of more immediate relevance has been the publication of metal-detector finds from a temple site at Bullock's Haste, Cottenham (Taylor 1985) and what was, effectively, watching brief work at Diddington near Huntingdon undertaken by a team from the office of the then County Archaeologist. Showing a similar relationship between the rectangular ditch compound enclosure and the shrine structure proper (a circular ditched building), the latter is of particular interest (Fig. 7.47:2). In extreme rescue circumstances only a single section was cut across the southern end of the compound and through the surrounding ditch of the shrine structure proper. This nevertheless produced three brass letters 'S, V, I' and a bronze balance arm (Jones 2001). This retrieval from such a limited excavation suggests a site of considerable depositional 'wealth'. What is particularly intriguing in terms of the Diddington shrine is that, given the inter-relationship of the shrine building and its compound (and occurring beside a barrow/ring-ditch cemetery: Evans 1996), it has the strongest affinities of any Roman religious complex to the Delphs shrine in terms of its plan and relative situation. It thereby again raises the issue of whether down-river (Ouse) or along-fen connections were then paramount.

For the specific practice of placing coins within the mandibles of sheep the closest parallel is with the circular shrine at Brigstock, Northants, (where horse-and-rider brooches also occurred; Greenfield 1963, 234–5). However, a more general regional comparison for the Delphs shrines' depositional practices is the extraordinary later second-/early third-century AD complex excavated by Alexander at Ridgeon Gardens, Cambridge (Alexander & Pullinger 2000). Uniquely, this took the form of an apsidal ended room (8.20 x 5
Chapter 7

Figure 7.46. The circle in the square: 1) Snow’s Farm shrine; 2) HAD II; 3) Slonk Hill (Hartridge 1978); 4) Shrine 2(B), Snow’s Farm; 5) South Cadbury (Iron Age); 6) New Whittles (Saxon: Hawkes & Gray 1969).

m) that was cellared to a depth of 2 m. Conjoined by a recess that was thought to be the base of a wooden staircase, no reconstruction of its superstructure has been attempted. Found sealed by the cellar’s gravel floor and within the ashy destruction horizon which overlay it were a series of articulated animal burials. These included horse, cow and sheep skeletons, and five dogs (three laid in a triangular configuration); the sheep had been set between the legs of the cow and six complete vessels had been placed around the horse burial in the structure’s apse end. Also associated were at least 13 deep shaft burials of third- to early fourth-century date, each containing an infant accompanied by a dog. Aside from a general emphasis upon animal deposits, no direct parallels are known for this remarkable site.

It was tragic that the Bullock’s Haste temple complex at Cottenham was destroyed through quarrying without excavation. Not only does the array of metalwork and cult figurines recovered suggest that it was ‘special’ (Taylor 1985), but its size was evidently extraordinary with a cella and ambulatory four to ten times greater than any other in the region (Fig. 7.47:5). Moreover, aerial photographs indicate that it was surrounded by a vast open ground delineated on at least three sides to give a 75–100 m stand-off around the temple buildings, presumably its temenos. This does, therefore, seem to have been a truly ‘great’ complex, so much so that it may have implications for the other shrines within this area of the southwestern fen-margin. For how do we envisage their organization? Were they, for example, only responsible to, and effectively ‘staffed’ by, their immediate communities (in the Delphs’ case by the Willingham fen-edge settlements) or centrally organized through civic administration and/or major temple complexes? Relating to arguments that the Delphs’ shrine reflects political authority and that it had little potential to house either a priest or cult regalia, it may well have been the case that its ‘operation’ was through either the Cottenham temple or a comparable centre, with priests and the cult trappings travelling out to more minor shrines for seasonal festivals.

Taylor has identified the double-circuit square enclosure at the north end of the Queensholme cropmark group as a probable temple site (1985, 44; see Chapter 8 below). Given its dating evidence and plan, this seems unlikely as ditched circuits are not the equivalent of a formal building plan, nor has any metalwork been reported from it. With rounded corners and a strictly concentric circuit it does not seem to define a cella and ambulatory, but is probably either a small Roman fort or an Iron Age compound reworked in Roman times. Similarly, Hall has related a rectangular cropmark at the Hempsealls (Site 20) with the find spot of the Willingham Fen hoard, and thereby suggested that it was its ‘host’ shrine (1996, 144). Yet even if directly corresponding to the hoard’s burial, there is nothing in the layout of the enclosure to suggest that it was a shrine and, found in a box, the hoard could well have been secreted away off-site (-shrine); no other shrine-related
metalwork is reported from the immediate vicinity. Otherwise, there are no obvious candidates for shrine sites along the fen skirtland north of Willingham and east of Cottenham. However, given the density of the cropmarks, others may well be masked and it is unlikely that the Delphs’ was the only religious site within this swathe of the fen margin.

Architectural and votive expression
(with G. Lucas)
One of the major characteristics of studies on Romano-British temples and shrines in the past has been the overwhelming emphasis given to architectural and art historical elements. Lewis’s classic 1966 text is, for example, essentially a gazetteer and classification of sites based on ground plans where temple sites are identified on the basis of recurring structural elements (such as cella, ambulatory and temenos) and are primarily grouped into two broad types: square and circular/polygonal (Lewis 1966). The same approach is taken up by Rodwell (1980a) in the second major work on the subject, although other artefact-based studies within that volume hint at a change in direction (e.g. Reece on coins). On the whole, however, artefact studies have typically taken an art-historical approach, focusing on objects with clear religious
significance such as cult objects and epigraphy to further the study of religious iconography and the Romano-Celtic pantheon (e.g. Green 1976; 1978).

While there is no doubt about the value of such studies coupled with the use of literary sources, until recently there has been a distinct lack of discussion about the activities that might be archaeologically identifiable at such sites. Where the issue has been raised, it is usually in the context of religious offerings which can take a number of forms from plegdes to thanks, but sharing the idea of a contract with a deity (e.g. Henig 1989). These are well illustrated by the votive plaques or tablets found at such sites as Bath and Uley. Votive objects in general may have clear cult connotations (either to a deity or their attribute), but coins and jewellery have also been observed to rank high in temple contexts (Henig 1989, 223-4). The potential of analyzing whole assemblages in terms of the composition rather than just votive or religious objects has recently been demonstrated with the publication of Uley where different cults are linked to different material culture packages (Woodward & Leach 1993). This is something which has been attempted at Snow's Farm in the absence of such cult objects.

In the report on the small finds, it was suggested that the predominance of jewellery is indicative of a healing and fertility cult. Even if over-interpretative, the comparison with other sites does point to major differences in shrine votive assemblages, something which does not correlate with architectural form. For example Brigstock, having close parallels to Haddenham in that its polygonal shrine dates to the same period and shares sheep head/coin settings, has a strikingly different votive assemblage, one much closer to Uley (Greenfield 1963; also see Knocker 1965). Another close example is in Godmanchester where an octagonal shrine has various votive object associations, although the assemblage composition as a whole remains unpublished (Green 1989). Conversely, tenpikes with similar votive assemblages can be quite different in form and scale, as demonstrated by the comparison between Haddenham and the complex at Lydney.

Not surprisingly, perhaps, the evidence for architectural plans and votive activities does not, therefore, seem to correlate. But if this is the case, does this mean that all the focus on ground plans and form would seem to have little significance for the rites being practised? Regarding the broad distinction between circular/polygonal and square plans, there may be as yet undiscovered associations, but more generally one might suggest a difference based on the scale or setting of the shrine. One aspect which has received practically no attention is the pottery. Though clearly present in abundance on temple sites, it is rarely integrated into the general discussion. In our study, potentially significant differences were found both between shrine and settlement sites as well as within shrine sites. In the first instance it seems as if shrines have a predominance of vessels associated with the consumption and serving of food and drink. This is not necessarily a fine ware/coarseware distinction, but one based on vessel form and putative use. Secondly, it also appears that shrines set within towns or within large temple complexes (i.e. highly Romanized sites) tend to have high numbers of vessels associated with drinking, while less Romanized sites are more associated with eating. In this context, it is instructive to compare Haddenham with the shrine at Great Dunmow in Essex, a small town. Architettically, they share some similarities, the latter being a small square shrine comparable with the first phase at Haddenham, and their votive assemblages are very similar sharing high proportions of jewellery with no votive objects. Yet in terms of their pottery assemblages they differ, with Great Dunmow having a much higher number of closed vessel forms than Haddenham, including flagons.

The true complexity of such sites is perhaps only just beginning to emerge and simple classification of temples or shrines (whether on the grounds of architecture or cult association) seems unlikely to succeed. Rather shrines are better considered as foci for certain types of social/cultural practice which ethnography shows need not have a distinct architectural form (i.e. a structural 'otherness' in contrast with the domestic). In the case of the Dinka recorded by Mawson, although the manner of the shrine's construction/rebuilding differed (with lengths of its wall and other components the responsibility of specific social sections), its form is that of a cattle byre. They do not bury sacrifices (though many sacrifices occur); the shrine is a place of feasting, dancing, ceremony and social negotiation. The only archaeological correlate that would otherwise distinguish it from its stockholding prototypes is the absence of cattle dung. In this regard the secondary shrine at Snow's Farm, while having Iron Age precursors, could conceivably have been modelled on sheep pens and have even been where the animals were actually held awaiting sacrifice. The recurrent ambiguity between shrines and animal pens (e.g. HAD IV) tells, on the one hand, of our failure to adequately differentiate between types of non-residential structures. Yet it may also reflect upon the character and interaction of ritual practice itself — a domain of metaphors ordering the natural world where human/cultural and nature/animal relations are defined.
Is this taking interpretative analogy too far? Yet consider the character of the Snow's Farm faunal assemblage and its ritual settings, with the recovery of two knife handles and shears which tell of the cutting of throats and the removal of fleeces. Although faced with the complications of sequence, these attest to the defining 'ethnographic moment' — the world-centring rite. Of course, this sense of an all-encompassing transformation will never be adequately expressed in the statistical analysis of assemblages. Nevertheless, excavation should do more than just provide grist for art-historical and architectural study, and instead genuinely interrogate the specific depositional practices of religious sites. It is surely more appropriate to consider shrines as places where a broad network of activities and meanings come together affected by their local setting, the deities solicited and the wider everyday practices, history and affiliations of the people involved.

Ritual performance: the place of ritual
Although possibly succeeding an Iron Age precursor, the Shrine 'erupts' within the Delphi site. It has little by way of build-up or 'announcement' within the test pit densities, nor apparently was it associated with settlement or outlying ancillary buildings (though the metallurgy sealing the adjacent HAD IV enclosure and its associated finds appear to relate to shrine activities). This may suggest that its precinct ditch was a definite divide, an inference that could be supported by the setting of votive 'placements' around its internal perimeter. Moreover, given its finds densities, items brought in may not have been removed. Other than the shrine(s) proper no direct evidence was found that there were associated buildings to house a year-round warden or priest (if of Roman attribution the E93 structure was very short-lived). It seems unlikely, for example, that most of the pottery could have been stored on-site between ceremonies and it is reasonable to presume that the majority must have been brought in only for 'events'.

There would seem to be two main ritual foci: within the floor area of the octagonal shrine itself and in the northwestern corner of the compound (Fig. 7.49). The character of these deposits varies. Whereas the latter involved the deposition of complete carcasses, apart from the central foundation burial, those within the shrine are of bodily parts: heads (mandibles) and hooves. Although it is probable that other acts of sacrifice have been subsumed within the site's surface spreads, the varying nature of animal deposits at these two points suggest different ritual practices. The burial of animals as a major act of sacrifice (and possibly to a deity if the gravel square in that corner carried an altar) and, within the main shrine building proper, the burial of head-and-hooves (presumably fleeces/hides) and heads/mandibles alone, with the remainder of the animal probably consumed. Whereas in the case of the latter it is conceivable that the meat (or parts thereof) was granted to the presiding priests for their sustenance, it is perhaps more likely that it was this that was feasted upon en masse by the wider community at times of ceremony.

Whilst potentially influenced by factors of post-depositional survival (e.g. greater plough damage on the crown of the barrow), a pattern of ritual placement can be discerned. Aside from within the floor area of the primary shrine (and the one mandible setting associated with the secondary) votive deposits were around the perimeter of the compound, with its southwestern corner (behind the octagonal shrine) consistently being 'backspace', seeing neither 'spread' nor placed deposits. That the perimeter of the compound was ritualized, but only where it could be readily appreciated (i.e. in 'front-space'), emphasizes the sense of performance.

Yet perhaps more important is the interrelationship of the shrine buildings and the location of 'active' ritual deposition (Fig. 7.50). In the case of the first shrine (whose foundation was marked by the burial of a sheep carcass), the area of active deposition was in the northeastern corner of the compound. Conversely, in the later shrine (which was marked by a single sheep mandible setting) the place of acted ritual was essentially within the floor area of the dismantled primary shrine. The point of this is that whilst the shrine interiors undoubtedly saw much hidden ritual for the initiated elite, in the main, ritual (at least the public demonstration and burial of the animal sacrifice) was performed out-of-doors. Aside from not fouling interior shrine building space, it is this which would allow for its appreciation as a public spectacle. Presumably directed by priests, ritual was evidently enacted in sight of the broader community. The phasing implications of these different ritual practices does, of course, indicate that group feasting was largely a secondary phenomenon.

Despite the site's differential depositional ritual practices, they probably related to the same ritual action: that is, foretelling the future from the condition of the sacrificed animal, be it through blood or entrails. Framed in this manner, the frequency of bird bones within the assemblage may be telling. On the one hand, they did not feature within placed or intentionally 'grounded' deposits and evidently had little role within officially sanctioned ritual activity. Yet what they could relate to is the 'price' of sponsored ritual. If the sacrifice of an animal was the cost of
Commerce and futures: a Midsummer Fair

Held over five days (including a weekend) during the third week of June each year, Cambridge's Midsummer Fair extends across most of the town's common of that name. A great historical fair (see Taylor 1999 on Cambridge's fairs), it also sees the gathering of many of the region's gypsy travellers. Behind the neon rides and lucky dip booths, their stalls sell gaudy china, carpets and glittering dresses. Adorned with gold jewellery and big shiny belt buckles, many travellers are distinct by their flamboyant dress.

The fair's approach is lined with the trailers of fortune-tellers, with many claiming to be the daughters and granddaughters of Gypsy Rose Lee. Sometimes during the day gold can be seen being sold out of the backs of cars, but usually these sales are reserved for the Saturday evening and concentrate around only a couple of stalls. Gold is bought in quantity as an investment when either you do not trust in, or have regular access to, banks.

Trade and fortunes — the weighing of scales and reading of palms (presumably also accompanied by much behind-the-scenes meetings and partying) — the fair seems to have something of the aura of the festivities that accompanied the Snow's Farm shrine.

Figure 7.48. Midsummer Fair, 2000. Harriet Gypsy Lee: as announced on her hoarding, 'she told the future to Freddy Starr, Nicholas Parsons, Lionel Blair and they have all made a great success — also the great John Lennon and many great football stars ... If these statements are not true I will give £1,000 to charity.' The fair usually has 5–10 such fortune-tellers pitched along its approaches. (Photograph C. Evans.)

participation, then a duck is obviously far less than a sheep; they would be an economically convenient source of feast-consumable meat and 'readable' parts (blood/entrails).

That balance arms were recovered both at the Diddington and Delphs shrines may also tell of other activities that occurred within their compounds. It is, of course, conceivable that these items were only token payments in recompense for commissioned rituals. Alternatively, they may have been part of the shrine's 'equipment', perhaps in demonstration of the weighing of souls (whose line may have been symbolically severed by recovered shears) or the material adjudication of ritual payments. Yet the presence of balances may have been more profane, namely to facilitate business. Like present-day fairgrounds, trade may have even been transacted during festivals. Possibly having parallels with the earlier causewayed enclosure, that such interactions between widely drawn participants occurred against a background of ritual may have been all-important; religion may have provided a 'bridge' for exchange beyond the trust of immediate kinship and the daily face-to-face community. Remembering the reported instance of Christ casting out the money-lenders from the temple (and the frequency of images of Mercury, the fleet-footed god of trade, on religious
sites), a shrine context for business is, moreover, particularly appropriate in that trading is intrinsically bound up with futures — ‘is this bronze sound?’ or ‘will this horse live up to its promise?’. Having a priest on hand to predict whether a transaction was auspicious may have been considered, at times, necessary.

While aside from at Brigstock (Greenfield 1963, 234–5) the specific practice of placing coins within two of the ‘mouths’ of the head-and-hooves settings is without direct archaeological parallel, its significance seems obvious: the fee for the worldly intervention of a god delivered by a messenger (i.e. the sacrificed sheep) into the afterlife. Another parallel could lie with the crossing of the River Styx into Hades and payment to its boatman. It is in the context of these indirect allusions to death and journeying into the underworld that the barrow setting of the shrine may have resonated, and here the site’s terrace

Figure 7.49. HAD III: the distribution of votive deposits.

Figure 7.50. HAD III: shrine access and depositional foci.
Chapter 7

Figure 7.51. The Snow’s Farm complex. Shifting foci in the long term: 1) F.76 cremation pyre; 2) area of secondary cremation cemetery falling immediately beneath ‘3’, the primary Roman shrine; 4 & 5) respectively timber Shrines 2A & 2B occupying the barrow’s crown.

location may have been significant. If the Old West River does coincide with the line of the Roman Car Dyke and had been canalized, then many of the participants in the shrine’s ceremonies would have had first to cross the river (by either bridge or ferry). While this transgression may have only physically been between fields and seasonal pasture, it may nevertheless have had far greater symbolic impact. Of course this cannot be known with any certainty, but such issues bear upon the cultural geography of

the terrace. At any one time there may not have been just one wet/dryland divide and ritualized boundaries need not necessarily coincide with a specific environmental ‘edge’.

Depositional rhythms, ‘messages’ and totalities

When excavating such unequivocally placed ritual deposits as in the shrine there is a clear sense that these are like ‘messages’ to the beyond — to the gods. As such, in their formality they seem as if effectively directed towards us and that we should be able to readily read their intent. If we cannot comprehend such discrete ritual setting then it gives little hope to interpret any ritual deposition on sites where their deposition is more enmeshed in domestic sequences, such as the HAD V enclosure. Yet, to return to a main theme of this volume, we must be equally wary of the lure of false totalities. It is tempting to get carried away by the rhetoric of interpretation, the idea that on this site we are somehow exposed to the full temporal rhythms of festivals and rituals; in effect, excavating time and a religious calendar. This is not to be unduly pessimistic, and certainly we can recognize basic ritual behaviour and components (e.g. the underlying thread of sheep sacrifice), but rather to acknowledge the complexity and contingency which underlies the sequence. Given that the shrine saw approximately 200 years of usage, the minimal number of animals involved would not point to the recovery of regular annual practices. Equally noteworthy is the brevity of the depositional or placed sequences, the maximum being the six successive sheep carcasses set in the northwestern corner of the compound; and, at most, there can only have been four episodes of the sheep head-and-hooves burial within the floor area of the primary shrine (plus a single hooves setting). (Possibly similar are the remains of the four rare birds in the southeastern and northeastern corners of the compound, heron, owl, cormorant and eagle, though some may have only been from scavengers.)

This suggests that the HAD III complex as a whole attests to a number of different temporalities. Firstly, an underlying longue durée of ritual behaviour
— the barrow to shrine (Fig. 7.51).
At its second tier is the re-investment or re-definition of the site as an identifiable locale: that is, its 'recognition' in the later Iron Age and then its two centuries of Roman shrine usage following a millennium of activity as a place of mortuary practice in the Bronze Age. Finally, there is the underlying rhythm of its immediate depositional sequence, which in terms of the regularity of practice within the shrine suggests spans of c. 5–20 years. It can only be presumed that this reflects the impact upon ritual practices by presiding individuals — the replacement and interruption of priests, and intervals without any direct successor when ad hoc community-determined practices may have occurred. In short, even in this most obvious ritual behaviour there is much unaccountable variability.

Ritual power and landscape
From the picture that has been presented of the shrine's assemblage it is compelling to see its practices as part of a spectrum of long-term 'unofficial' ritual activity: a local manifestation of religion existing beyond the pale of Roman statehood. It is in this context that Bromwich's finds are crucial. The recovered rod and baton handle speak of the declaration of office, the existence of priests who presumably sanctioned and performed ritual. Even more telling are arguments that the baton handle may directly relate to those within the Willingham Fen hoard (Fig. 7.52; Evans 1984). The hoard features a bust of Antoninus Pius atop a mace of Hercules and is, therefore, thought to have imperial associations. Much discussed in terms of its art-historical values (Rostovtseff 1923; Alfoldi 1949), how do we account for this potential linkage of this rich hoard and the lowly shrine? Given the hoard's imperial association, this is a key issue and one that obviously relates to the question of the possible management of the Roman Fenlands as an imperial estate (Potter 1989a,b). As argued above, while it may have been housed for the better part of the year in a major temple complex, possibly that at Bullock's Haste (for which an imperial association can also be postulated through the recovery of a bust of the Emperor Commodus), at times in the ritual calendar the hoard's cult objects and its attendant priests (planding their batons of office) may have migrated between the festivals of neighbouring shrines. If so, religion would then have very much been a part of a policy to 'captive' the local populace. Under the (sculpted) gaze of the emperor the future was foretold and, through the control of the calendar, 'time' was managed and ritualized. Yet this cannot just have been a matter of hollow ideological expression. It is in relationship to a background of place and local meaning that this 'pomp' must have resonated. We must be equally wary of seeing social power only expressed in the officialdom of the primary shrine with the secondary structures reflecting some manner of more 'folk-type' activity, perhaps distantly analogous to behaviours associated with the causewayed enclosure. Behind such constructions there would always have been presiding individuals, be it priests, shamans or 'head persons', interceding with the divine to motivate and organize the wider social body. In the concluding chapter the issue of ritual activity as cultural 'action' and both the long-term and immediate historical identification of the site will be more thoroughly developed.
Chapter 10

Reclamations: Communities in the Level

So forget, indeed, your revolutions, your turning-points, your grand metamorphoses of history. Consider, instead, the slow and arduous process, the interminable and ambiguous process — the process of human siltation — of land reclamation.

G. Swift Water/ and 1984, 8; emphasis added

Given the fragmented picture and arbitrary framework of the Haddenham landscape studies, it would be inappropriate to conclude with any manner of sweeping overview of pan-Fenland usage. We did not investigate the totality of any one period-based landscape system, if such a thing is possible given that connections will invariably lead outwards. Therefore, more 'path-like' than grandly systematic, let us instead consider what are amongst the major themes that the sequence reflects upon.

Domestic frameworks: bounding land

As unquestionably functional as are the drains which have divided the Fenland for the least three centuries, in their regularity they are symbolic of the new capital and landscape attitudes which lay behind the transformation of these marshland 'wastes'. Its chequerboard landscape has marked affinities to the grid-iron of roads and townships laid out by British surveyors across the nation's far-flung colonies of the same period. A 'signature' of colonization, they speak of efficiency, the denial of 'past time' and effectively proclaim a clean slate (see Evans 1997b). While these are themes that will be further explored in the penultimate section of this chapter, critical at this stage are the potentially symbolic attributes of all boundaries by the virtue that they divide. This, for example, is something that both the causewayed enclosure and Snow's Farm shrine sites share: marking edges and keeping the world at bay, be it the 'wild', the forest or the 'wet'.

Within a strictly regional context any discussion of domestic occupation could essentially be considered as a charting of the rise of ditching/dykes to the point that, as outlined by James, these were 'the common form of fence' in the region. At this juncture the advent of Bronze Age field-systems and Iron Age settlement enclosures and the eventually 'great' Roman radial systems could be rehearsed in the guise of a vaguely evolutionary schema relating the greater frequency and scale of such ditching to deteriorating environmental conditions. Attractive though this logic is, it simply is not valid. These trends are not regionally specific, and to a greater or lesser degree the same ditching sequence can be traced through such diverse landscapes as, for example, the Thames Valley or the Midlands.

It has elsewhere been argued that one of the shortcomings of archaeological practice within the region has been to interpret 'national' phenomena, such as causewayed enclosures, Bronze Age field-systems or Iron Age 'hillforts', strictly in response to local environmental factors (Evans 1987). The rise of ditched boundaries obviously relates to broader changes variously concerning the character of 'gathering', landholding/tenure and, eventually, property. Although obviously undergoing regional 'translation' (i.e. adaptation), they cannot just be identified with drainage and as only a product of the Fenland environment.

Within a regional context, sites like HAD V or the Snow's Farm shrine continue to be largely unique in their substantive representation of wetland resources. Therefore it is ironic that, against this more widespread legacy of increasing ditch-division, it is the ubiquitous 'one-offs' that may tell most directly of the region's sequence itself. At one end of the scale there is the Flag Fen platform (Pryor 2001); at the other, the use of the crowns of earlier barrows as in-fen stations. In this vein, there has been discussion of what is missing from the region's later prehistory in contrast to comparable continental sequences (see Evans 1997a concerning the Iron Age cultural evaluation and responses to the 'wet'). If population pressure was in any way a significant factor, where is the Fenland equivalent of marsh-fast settlement (e.g. terpen) or evidence of co-ordinated ditching/embankment to keep water levels at bay?
The Haddenham sequence certainly reflects upon the changing character of the domestic and its interaction with the monumental. On the one hand, there are early Neolithic ‘campsite’ pitting clusters such as suggested from HAD VIII investigations, and those more recently excavated at Barleycroft Farm. These stand in stark contrast to the obviously domestic nature of the terrace’s Iron Age occupation. Yet, however permanent and ‘robust’ its settlement, even this was supported by much ‘going out’ into the landscape (short-lived displacement). Whilst it is tempting to trace the processes of ‘settling down’ within the Haddenham landscape, subsequent research in the region and elsewhere in Britain shows the hinge-point in these discussions to be the later Bronze Age. Despite caveats pertaining to project contingency, we simply failed to adequately problematize this period’s usage on the Delphs and, without this evidence, there is little scope to address this broad issue. As a consequence, however, this has now become the key theme of subsequent research within the lower Ouse Valley (Evans & Knight 2000: 2001).

Although a complete framework of the terrace’s settlement history was not achieved, its sequence offers insights into the nature of land division and common holding. A sense of familial tenure is most clearly expressed in its later Iron Age occupation and must underpin the layout of the HAD V and VI compounds with their adjoining field-systems. This may not have been a matter of ‘property’ inasmuch as it could not have been sold, but rather rights to these plots would have been maintained through patterns of residence and inheritance. Of course, details of this system’s operation are unknown; particularly whether the seasonal use of adjacent water meadows and stands of marshland were exclusive or in common. Be this as it may, the sequences of house rebuilding and the cumulative scale/character of ditched settlement compounds certainly indicate considerable long-term investment within their plots.

Opposed to this are those periods when the terrace was a place of gathering; primarily in the earlier Neolithic and Roman times as respectively expressed through the causewayed enclosure and Snow’s Farm shrine. As will be argued, the character of the terrace’s usage differed markedly between the two inasmuch as during the Neolithic it can be considered a ‘central place’ whereas in the Roman it can only have been marginal. Nevertheless, these periods see the floruit of mass ritual expression and in neither did the terrace evidently host substantive domestic settlement. The land was then presumably held in common by those ‘mass’ communities drawn to participate in the ritual centres. Given this, it seems reasonable to suppose that it was ritual that bonded these dispersed groups and may have provided a framework through which common rights were negotiated.

Accepting this logic, what becomes difficult to envisage is the area’s usage in the later Neolithic/earlier Bronze Age. Evidently practicing a mobile economy, aside from individual barrow construction, within the context of the Delphs there seems little evidence of mass communal gathering (inter-lineage; however, see below). The period’s barrows and ring-ditches would have also served as markers to announce group rights to seasonal pasture. What is equally interesting is the potential role of the Snow’s Farm barrow in the first century AD. If ignoring the possible ritual attributions of the HAD IV enclosure and accepting that it relates to seasonal rights to the Delphs in the wake of the abandonment of the HAD V and VI settlements through flooding, the scant evidence of usage and local off-terrace settlement densities from this time would not suggest competition for the terrace by different groups. Rather, it was probably seasonally exploited in a manner suggesting the opportunism of a single community whose home settlement may well have lain on the Willingham/Cottenham skirtland (e.g. Queensholme). If so, it may be relevant that a site immediately beside the barrow was chosen for the one substantial enclosure of this period (HAD IV) as it also suggests a need to mark or reinforce only seasonally occupied lands.

The sequence therefore tells of the key role played by ritual in the negotiation of common rights/access, of which (apart from specific mortuary activities) en masse gathering is the most obvious expression. Leaving aside the problems of the status of HAD IV, during the later Iron Age — when there was the most clear expression of land tenure on the Delphs — ritual activity (or at least deposition therefrom) seems largely to have moved into the house as attested through the marking of doorways. What again highlights is the need to investigate further the Bronze Age/earlier Iron Age occupation as apparently marking the interface between communal and more obviously domestic or rooted ‘lifeways’.

Ritual structures

Comparing the HAD V and Snow’s Farm shrine faunal assemblages the predominance of sheep within placed deposits is striking. It is the only animal used in the Iron Age house-threshold deposits (and the only obviously ‘special’ animal settings on the site whatsoever) and was also the prime ‘messenger’ of sacrifice within the Romano-Celtic shrine. As discussed, in the case of the Iron Age settlement it seems remarkable that, given
the range of wild species that were evidently taken, these otherwise present 'exotics' seem not to have been deployed for ritual purposes. Similar sheep deposits have been found set at thresholds of the Colne Fen Iron Age roundhouses (Regan & Evans 1998; 1999). This may suggest a range of local ritual practice and tell of its 'language' inasmuch as its scale was beyond the level of the immediate household. It is one thing for a community to uniquely practice a range of economic activities ('catch' skills) so as to have access to the extraordinary array of wild life represented at HAD V, but quite another thing to use them ritually (this being despite the totemic affinities of such creatures in other periods). If they had, would a larger community have been able to read their intent? All this suggests that ritual communication operates at a wider level of social group interaction than the daily community.

In the case of the Snow's Farm shrine, while sheep clearly predominate as the chosen animal for ritual activity, other domestic species were also deployed (cattle, pig and horse). Though a range of domestic fowl and exotic birds were also deposited, apart from boar, game animals were not. The inclusion of smaller birds (e.g. coot, duck and domestic fowl) has already been discussed in terms of their familiar 'feast' and sacrificial potential (i.e. the smallest acceptable 'animal price' for ritual participation). However, the occasional inclusion of 'big' birds (owl, cormorant and eagle) requires further explanation. They may, in fact, have had analogies with the sheep as 'messengers' through their capacity for flight (i.e. flying to the gods). However, their role may not be directly comparable inasmuch as they were largely placed around the periphery of the compound, as opposed to the sheep sacrifices which were set both within the compound's northwest corner and in the interior of the shrines per se. This may suggest a different translation of basic ritual practices; perhaps an individualist interpretation of rites by a specific priest or a less formalized expression by the local community (or sections thereof). Given that these species do not seem to be present on contemporary domestic assemblages (cf. Queensholme), this may have involved a re-configuration of local identity vis-a-vis the representation of the immediate landscape within ritual. If so, its metaphors clearly related to concepts of flight as deposition evidently did not involve marshland land mammals.

While preference was clearly being exercised, there is little sense of formal structuralist opposition of the placed deposits within either the Iron Age settlement or the Romano-British shrine. In the former, the marking of house doorways by sheep is not balanced by any similar demarcation of, for example, the hearth (the centre being the only other obvious point of distinction within a round structure). The use of sheep in thresholds suggests foundation deposits offered up to bring good fortune to the house and its inhabitants and/or to exclude evil from its interior. Similarly, while ritual deposition within the shrine was probably prescribed (i.e. governed by priests), given the range of species that were ultimately involved, it does not seem to have been particularly exclusive. Considerable flexibility (and compromise) seems to have been admitted into its practices.

Aside from the basic principle of sacrifice and probably the augury of entrails (and accompanying feasting), any other reading of these rites seems arbitrary. There is no apparent ritual expression or 'problematisation' of, for example, the wild vs. the domestic or the living and dead; nor, for that matter, gender. In short, none of the classic oppositions readily prone to cosmological modes of structuralist analysis. This is not to say that these deposits were not accompanied by elaborate performances (in which multiple 'opposites' may have been bound up), but just that they are without obvious material expression.

Apart from the occurrences of coins with the sheep burials in the Snow's Farm shrine, in terms of later ritual practices we do not seem to see 'packages' whose assembled components suggest any kind of 'message'. In the instance of the shrine, the coins appear to be payment carried by the animal messenger and not a matter of an associative material code (e.g. bone+metal = ?). Instead, if there is an underlying theme it is animal sacrifice; the distinguishing criteria is whether it was a bodily token that was deposited (with the flesh consumed) or the complete carcass. This is not a matter of direct material culture 'play', but economic sacrifice reinforcing the collectivity of the social group (i.e. feasting). What goes into the ground is not the prime concern but its results amongst the living (the binding of the social group and the reading of future action).

Also requiring overview is the treatment and place of the dead. Whereas in the case of the causewayed enclosure human skeletal remains were clearly a part of ritual placement, while present and presumably used in rituals on the Iron Age settlement, they do not seem to have been subject to intentional deposition as such. Representative of more formal cemetery-based interment of the period, at first glance it may seem that the dead had no role in the Roman shrine. Yet, as discussed, crossing of the river may have had connotations with outer worldly journeys and surely the sitting of the shrine on the barrow (and perhaps more directly on its secondary cremation cemetery) would itself have provided much of the complex's
Chapter 10

associative resonance. Of course, in this context the riverside barrow cemetery must not be overlooked, which is extraordinary in its linearity and density, and that it occurs on only one bank of the palaeochannel. Linked with Neolithic antecedents, from the earlier Bronze Age this seems a matter of deploying the dead at the wet edge: the marking of a major environmental and cultural divide.

Earthwork continuities: the place of ritual

The fens, more than most landscapes, saw discontinuity in its settlement record. Successive inundations, both freshwater and marine, interrupt its sequence. A landscape to leave and to be returned to, from at least the first millennium BC settlement would have demanded weighing the economic return of marsh resources and the availability of land against environmental risk: the threat of flood. Yet prior to its ‘blanket’ inundation in post-Roman times, would it ever have been a blank slate without cultural association? In their in-roads Neolithic communities would have been aware of a Mesolithic past; the traces of the causewayed enclosure would be apparent, at least until the later Neolithic/earlier Bronze Age, and the siting of the HAD III barrow may have been in reference to it, just as the Snow’s Farm Romano-Celtic shrine was later sited upon that barrow.

As in the case of the Roman stock enclosure constructed against the HAD V enclosure in its earthwork form (or the evidence of Iron Age ‘camping’ on Bronze Age barrows), earthwork relationships can be pragmatic (i.e. seeking dry elevation). Equally, they can be associative and appeal to mythic genealogies of place. Again, the Snow’s Farm complex offers the best exemplar, albeit ambiguous (in keeping with the character of cultural landscape relations generally). If the adjacent HAD IV enclosure is considered an Iron Age shrine, then the barrow complex demonstrates an unbroken ritual tradition over two-and-a-half millennia (the site’s earlier occupation/visitiation in the Neolithic seems essentially domestic): earlier Bronze Age barrow>later Bronze Age cremation cemetery>Iron Age shrine>Romano-Celtic shrine. If, alternatively, the eastern Iron Age enclosure was of essentially domestic function (though with a ritual component), then this associative strand was interrupted. It could, of course, be argued that the siting of the Roman shrine on the earlier barrow was itself entirely pragmatic and should be seen as an attempt to elevate the structure above the threat of flood waters. Yet this could also be a case of intentional reference to a, by then, ‘safely’ distant mythical past (e.g. ‘marking of the burial of the giant who stilled the waters’ or whatever). As such, it denied or ignored an immediate and potentially ‘dangerous’ Iron Age past, relating as it probably would to lost lands and rights (whatever its specific function HAD IV was then clearly sealed). Ultimately, we cannot know this. However, much as the Snow’s Farm complex resonates to earlier surrounding monuments and influences later sites, it is a matter of cultural reference — slippery contexts and ambiguous histories.

Providing the narrative strand to this volume, can we nevertheless situate the Snow’s Farm complex through time in relationship to its participating communities, contemporary monuments and ‘historical’ associations? In short, can we map its changing ‘place’ within the cultural landscape? Any such measure of distance and proximity must, of course, be tentative and subject to recovery bias. While for example the HAD VII Beaker ‘community’ may have built the barrow, other contemporary sites may have gone unnoticed. Equally, although the members of the Cut Bridge Farm enclosure and other Willingham fen-edge settlements (e.g. Queensholme) surely participated in ritual at the Romano-Celtic shrine, other cropmark enclosures scattered around the northern fringes of the Delphs (that went untested) may have also been within its draw.

Located as an outlier west of the main Ouse terraces barrow cemeteries, it must be presumed that the Snow’s Farm barrow’s proximity to the causewayed enclosure 140 m to the northeast was intentional, and this supports the supposition that the earlier enclosure was then still visible in earthwork form. In its two phases of active usage the barrow lay c. 200 m from contemporary settlement: respectively the HAD VII Beaker site and HAD VIII enclosure. This could be considered a safe distance from settlement but still allowing ready access to and identification with ‘their’ monument (i.e. could be pointed to and easily seen).

Thereafter the context of the barrow per se switches, presumably becoming a place of association but not active ritual. Here lies the hinge-point of its sequence: the attribution of HAD IV and whether it was an Iron Age shrine. Although its ceramic associations suggest that it is unique within the context of the Delphs, and certainly there is evidence of selective deposition, there is little that would definitely indicate a distinctly ritual function. Yet, ultimately, given its proximity to the barrow (only 30 m) and the distinct sub-square form of its inner eavesgully (reminiscent of both Iron Age shrines elsewhere and the final post-built Roman shrine), one would have to say that it was likely to be of non-domestic function. In other words, it was probably a shrine and, given the ambiguity of its structural/depositional attribution, it may have been its proximity to the earlier monu-
ment that ultimately ‘empowered’ and distinguished it. The very fact that this enclosure was not actually sited upon the barrow proper may have been out of both respect and fear. Whether or not some 400-600 years later they were actually aware of its later Bronze Age cremation cemetery, it could well have had very alive associations as a place of the dead; ‘ghosts’ may have as much determined its stand-off as empowered its rituals. (If accepting the alternative reading of this site as, in effect, the abode of Iron Age herdsmen then it could be argued that its proximity to the barrow relates to the latter’s role as a prominent landscape marker within a transhuman cycle. In this manner, the monument would have reverted to a role not unlike that advocated for ring-ditches/barrows within patterns of later Neolithic/earlier Bronze Age residential mobility.)

Finally comes the site’s Roman interrelationships, when the barrow was reinvested as a shrine. These are much more distant; it lay in (pasture) ‘outlands’ c. 0.5 km from contemporary settlement and evidently became a place to visit at times during the ritual calendar. At the most basic level it could be argued that this distancing of ritual also relates to its significance in contemporary life (i.e. a more distinct categorization than in Iron or Bronze Age times). The nature of ritual then changes and, directed by appointed priests, would have been more formal and specialized (and consequently its rituals ‘speak’ more clearly). It could be argued that this phase of usage was, based on the distribution of fen-edge shrines, inherently political and divorced from the immediate ‘localism’ of earlier practices. From this sequence a schema of the monument’s changing status could be proposed:

- **Bronze Age** ‘Active’
- **Iron Age** ‘Associative’
- **Romano-British** ‘Political’.

Yet, while internally neat in its ‘packaged’ titles, this sequence begs the question whether the distribution of Roman shrines was only ‘political’. By this is meant the formal re-organization of rites (potentially involving erasure and imposition/substitution) intentionally sympathetic to the goals of civic administration. The key point is that, though the Roman shrine at Snow’s Farm was probably a political gesture, it surely resonated with the locale as a place; its values were probably also associative, and certainly it hosted much active ritual.

Although unavoidably arbitrary in its measurement of cultural space, Figure 10.1 depicts the changing situation of the Snow’s Farm complex in the terrace landscape both in terms of the distance to contemporary settlement and previous earthwork associations. What is critical, at least in this case, is that although through time (obviously influenced by environmental factors) settlement lay at a greater remove from the ritual complex, its associative linkages became more immediate (Fig. 10.2). Eventually the shrine was sited on the barrow: the association is direct and the linkage between the sites was then one-to-one.
Chapter 10

Figure 10.2. Ritual measure. The tabulation of the Figure 10.1 distances demonstrates that although the distance to contemporary settlement increases through time, earthwork association becomes more immediate so that by the second century AD the shrine was sited directly upon the Bronze Age barrow.

It could be argued that this itself reflects the changing situation of the barrow complex. Through time as earthwork traces accumulated (and there was a greater emphasis upon ditched enclosure), associations would have had to have been more direct if coherent 'meaning' was to be read. Moreover, in Roman times when the terrace landscape and shrine became a place to visit and were apparently not lived in, there would have been a greater need for a directness of any such association. Meaning would not have been conferred on a daily basis and, if it was to be channelled (and politically deployed), then there would need to be a greater explicitness of linked 'monument' sitting.

An opposing tack could also be proposed for this sequence as is embodied in the Hermitage Farm barrow sequence. Evidently an equally meaningful place, it was much redefined and elaborated over the c. 1000 years from the earlier Bronze Age to the end of the second millennium, when thereafter all but its crown would have been lost to the marshes. By Roman times the Snow's Farm barrow may well have been the last ritual monument visible within the immediate Haddenham landscape. So isolated, the very loss of its context (i.e. larger barrow cemetery association) may have participated in its later evaluation and subsequent re-investment.

Environmental and landscape sequences

At the most basic level cultural geographies are invariably, if approximately, both concentric and linear. Landscape evaluation will always involve concepts of inside/outside and the routes to achieve places: paths and corridors between core zones and their peripheries. Although risking caricature and the blurring of categories (and distributions), the sequence of early usage on the Upper Delphs and its changing situation within the broader physical and cultural geography of the Haddenham lowlands can be outlined. The determination whether it was the Ouse or fen (-edge) that provided its dominant structuring principle has, to some degree, draw upon the evidence of other excavations within the vicinity. Nevertheless, at least in the immediate area this shift would essentially seem to fall between the Bronze and Iron Ages. To some extent this is to fly in the face

472
of accepted Fenland-use orthodoxy as established by the Peterborough sequence: the sense that the Fengate field-system and the associated Flag Fen platform are unquestionably a Fenland phenomenon. Despite their showing little direct economic utilization of the ‘wet’, this is indisputable; Flag Fen was, after all, situated out in the marsh. However, the Ouse sequence may have differed. At the broadest level of landscape analysis, although having outliers, there is no denying the essentially riverine distribution of the Bronze Age barrow cemeteries in the area. Yet the evidence suggests something ‘more’ and here lies the rub of the sequence in terms of the complexity of landscape cognition. The key point, of course, is that it is not a matter of there being an edge, a divide, but many.

Within the Haddenham area the Neolithic landscape would seem to have had two main foci: the Foulmere Fen terrace with its cluster of funerary monuments and the great causewayed enclosure on the Upper Delphs. Surely linked by paths, other small clearances and campsites would have dotted the area as attested by the pitting cluster at Barleycroft Farm (Evans et al. 1999; Evans & Knight 2000). Essentially it seems a matter of pocketed enclaves amid forest and, as argued, the very raison d’être, symbolism and irregular plan of the causewayed enclosure may relate to the establishment and maintenance of a ‘great’ clearance. Yet, set against this pattern of pocketed forest foci is a larger pattern that is essentially riverine — the Ouse as a corridor into landscape.

As demonstrated in the loss of the skirtrand terraces of the Chatteris/Ely peninsula, during the Early Neolithic there seems no sense of a major wet/dry divide, though surely there would have been backwater pools and cut-off oxbow bends with their own wet edges within these very low-lands. Nevertheless there is no evidence that the ‘wet’ was then problematic as a significant cultural landscape category. Although little demonstrated within the project’s studies, it would have been through more extensive clearance in the later Neolithic and earlier Bronze Ages that broad zonal distinctions may have developed (i.e. beyond forest/cleared itself). In this, it is the organization of the barrow cemetery that is the most telling. Markedly linear and distributed only along the southern and eastern riverside terraces, in relationship to marine incursions across the lower fen plain north of the Ouse channel, it would seem to be then that a substantial portion of the landscape became wet. It was this divide with the southern dry lands that the barrows demarcated.

The Lower Delphs terraces were essentially ‘lost’ from occupation in the later second–early first millennium BC. While thereafter the upstanding crowns of earlier round barrows were evidently utilized as marsh-fast ‘stations’, the inundated western terraces no longer saw settlement per se and certainly there is no evidence of Roman usage whatsoever in this area of the Level. It was during the Iron Age that we seem to see a marked geographic shift, with settlement strung-out along the fen-edge at the wet/dry littoral of c. 2.50 m OD. Seeming to complement this usage (though retreating back from the ‘edge’, and largely south behind the line of the Car Dyke/Old West River), the organization of the Romano-British landscape was also fen-related and variously laid-out from the high terrace skirtrand of Cottenham, Willingham, Over and Earth Somersham. This is not a matter of either/or, and these Iron Age and Roman communities surely had up-river (inter-)relations, but rather the distribution of sites within this area directly related to the wet marshland and was not essentially riverine.

In relationship to monumental definition and distributions, the Delphs’ sequence can also be variously characterized in terms of its centrality and marginality within local land-use patterns. As attested by the construction and scale of the causewayed enclosure, during the Neolithic it can only be considered a central place: a locale for gathering. Caveats aside pertaining to the recovery of Bronze Age activity, if not considered marginal, it can then only have hosted low density settlement, with the Snow’s Farm barrow and eastward ring-ditch as outliers of the main Ouse terrace cemeteries.

With settlement enclosures dotting its fringes (and with its crown arguably reserved for arable production), during the Iron Age the Delphs again seems to have been a distinct locale and significant settlement focus. Whereas characterized as ‘outlands’ (and ‘liable to flood’), in Roman times the terrace can only have been considered marginal in relationship to the dense quasi-radial layout of contemporary settlement and field systems south of the Old West River.

Against a background of a changing physical (and cultural) geography, a rhythm of investiture within the terrace’s settlement sequence seems apparent. When it served as some manner of ‘centre’ or at least a significant locale in its own right, were times of environmental colonization; during the Neolithic as part of the process of Neolithization itself (e.g. clearance), and during the Iron Age in adaptation to a wet environment. This evidently tells of the social and cognitive processes of ‘coming into’ land and the realization of its possibilities. This contrasts with the area’s political colonization in Roman times, when it does not itself seem to have been re-invested as a new focus. Of course, the utilization of the barrow as the site for a shrine suggests a sense of (re-)invented place.
The point is that it then lay distanced and at a remove within what were clearly marginal outlands.

Settlement hierarchies, community resolution and social fabric

Unless accepting social relations as voluntary, issues of power and obligation must, of course, underlie models concerning the central vs the marginal status of the terrace through its land-use sequence. In historical times (the terrace's Roman and post-medieval usage) these relationships ultimately led out of the region to manors, villas, London and beyond (e.g. Rome). Yet in terms of the Upper Delphs in prehistory what is the expression of, or correlation to, such relations? Leaving aside the Bronze Age (on the basis that too little of its structure was recovered), we are left with the Neolithic and Iron Age: both periods in which it has been argued that the terrace was a significant locale within its own right. Based on this, and drawing from the evidence of other sites in the region, Figure 10.3 expresses models of what would usually be considered settlement hierarchies but which also try to depict levels of community resolution (i.e. situating identity and ritual practice). In the case of the earlier Neolithic we know of no higher level of social expression than the causewayed enclosure. What lies behind or below it are short-lived campsites and lineage-based long barrows. In the Iron Age, whilst seeing more obviously permanent modes of settlement as expressed in the household compounds, below them in any tiered sequence must lie the short-lived procurement camps. However, the key point here is whether anything lies above this level — do we imagine the Iron Age as a free-peasantry or bound by extra-familial structures (e.g. tribal and /or clientage)? Was HAD V only a 'successful' familial structure or did a substratum exist below and, equally, did its inhabitants have obligatory relations to off-terrace 'centres'? Within the regional record, of the latter the only known are the 'great' defended enclosures, the nearest being at Belsar's Hill, Willingham 3 km to the southeast (see Evans 1992). Unexcavated, it is not known whether it was a communal construction to be used as a refuge as times of threat such as is proposed for Arbury Camp (in Clarke 1972; see Evans & Knight 2002) or a residential seat of power perhaps analogous to the Wardy Hill Ringwork (Evans 1992; 2003a).

These questions reflect the interpretative dilemmas of their respective periods. In terms of the Neolithic, was there any more permanent basis of settlement between the campsite and the causewayed enclosure, and during the Iron Age, did anything lie 'above' the settlement site? In short, at which level were social groups respectively configured? The scheme presented in Figure 10.3 is essentially hierarchical based upon size and a greater complexity of mass-integration. It suffers from the shortcomings inherent in any such modelling and it could, for example, be argued that, situated in the uppermost tier, the causewayed enclosure has more in common with the Snow's Farm shrine than the Roman settlement at Earith: or the modern village of Haddenham also set on the uppermost level.

In terms of the situation of ritual gathering (variously annual visitations to the causewayed enclosure or the Snow's Farm shrine or even going to the church/chapel in Haddenham), of pressing concern is the character of ritual in the Iron Age. This again returns us to the issue of whether the HAD IV enclosure was a shrine: did they 'go out' for ritual or did it only occur in the context of settlement? Here the terrace's 'invisible' Bronze Age may help to inform us; barrows/ring-ditches aside, we know of no other level of mass ritual gathering during that period. On the one hand, given the character of deposition in the HAD III barrow, at least in its secondary Deervel-Rimbury associated phase, it was a place of group gathering (and earlier the construction of the mound must itself have been a mass event). Yet, this must essentially have been the equivalent of rites relating to the earlier Neolithic long barrow (or, later, Roman cemeteries) not inter-community gathering. On the other hand, the frequency of human bone on later Bronze Age and Iron Age settlements could suggest that a level of ritual activity was subsumed within settlements. The layout of the Barleycroft Farm Bronze Age field system and its ring-ditches would suggest that one of the 'hill'-tops within the floodplain was a place of mass gathering (Evans & Knight 2000; 2001). During the Iron Age the Upper Delphs populace must also have had a place of mortuary ritual and probably, too, the equivalent of otherwise empty 'fairground' space — a place of trading, striking marriages and performing group ritual. Evidently unenclosed, these have yet to be detected (unless this is what is reflected by the traces of contemporary activity on the crown of the HAD III barrow itself).

Figure 10.3 (opposite). Levels of community resolution. Neolithic: 1) Barleycroft Farm, Mildenhall pit cluster; 2) Foulmire Fen long barrow; 3) Delphs Causewayed enclosure; Iron Age: 4) Barrow-top procurement 'station'; 5) HAD V; 6) HAD IV ('shrine'); 7) Belsar's Hill Ringwork; Roman: 8) HAD XI stock enclosure; 9) Cut Bridge Farm complex; 10) Snow's Farm shrine; 11) The Camp Ground 'town' at Colne Fen, Earith (Regan & Evans 1997); post-medieval: 12) Snow's Farm; 13) Haddenham Village.
Given the nature of the terrace’s sequence, a sense of communal coherence seems apparent in its early periods of usage: the causewayed enclosure seemingly integrated dispersed lineage sets and, at least as recovered, the terrace’s Bronze Age occupation seems unlikely to have encompassed much diversity. However, the same is not true of the Iron Age, when we find diverse pottery/faunal assemblages and enclosure types. This potentially raises issues of the character of the contemporary terrace community. Was it always a collective ‘unity’ or did it include the marginal expression of more distant groups? Although, as discussed above, these differences may have chronological implications, they also hint at a complexity of social fabric. During this period the terrace would have fallen on a significant social border — the northern limits of the Aylesford–Swarling cremation rite (and earlier gold coinage) and between northeastern shell-floored ware distributions and southern sandy ware groups — which may well have resulted in an intense social dynamic (Hill et al. 1999).

Equally, it is reasonable to envisage that, at other times, the terrace variously saw the interaction of Neolithic and Mesolithic groups, and Romans and Britons (or at least Romanized communities of widely varying degree), and we must be wary of necessarily assuming homogeneous past communities.

The loss of fabric

Despite or perhaps because of its ‘newness’, the Fenland has been prone to much mythologizing and legend. These ‘Tales from the Fen’ variously emphasize a rebellious identity in which the drowned past beneath the blanket surface geography serves as alternative, an other, to the present. However, the historically relevant tales (evidently ‘informed’ by vacationing academics) are generally little concerned with specific places. Rather they tend to embody tableau-like vignettes of resistance in which the intercession of timely floods often serves as a hyper-metaphor of structural inversion, with worlds turned ‘upside down’ and social order inverted (see Evans 1997b for further discussion and examples).

The character of the area’s place-names reflects the extent of hiatus in the settlement sequence in Saxon/medieval times: the Upper and Lower Delphi, Foulmire Fen, Brown’s Farm, Snow’s Farm and so on. Variously describing their plot’s topographic situation, condition and ownership, they do not evoke time depth or association. Instead, they convey a sense of new start from a blanket landscape — a new land (‘Year Zero’). The parallels between the cultural landscape of the drained Fenland, colonialism and concepts of the nurture of ‘wastes’ elsewhere have been previously explored (Evans 1997b). Certainly it tells of landscape attitudes (and ‘newness’) that we find colonial place-names employed: locally, New England Farm; near Sutton, America and, at Wilburton, Australia Farm.

We have come to view the countryside through a perspective of continuity, the comfort of rural custom (as the antithesis of the urban). At first glance James’s study of the succession of the terrace’s farms over the last two centuries evokes a sense of appropriate rhythm through the reassurance of a generational settlement fabric. Of this legacy of names and places only Hermitage and Flat Bridge Farm remain today, with the rest having gone into vast expanses of fields and industrial farming practice. A feeling of loss underlies this; of ‘nameable’ familial history having succumbed to economic trends and, effectively, entered the archaeological record. Yet is this just sentimentality and is it, for example, really any different to what occurred on the Delphi during the later Iron Age? ‘They’ have also gone, and the settlement densities and overall time span of the two periods (the post-medieval and later Iron Age) are, after all, roughly comparable. In the renaming of these more recent farms, the frequent changes in ownership and tenancy, and the rise, amalgamation and decline of plots there is a strong sense of settlement dynamic and, too, fragility (see P. Hill 1992 concerning the contingent nature of apparently ‘traditional’ Fenland communities). Without arguing for either an environmental or economic determinism (and, if anything, through the intense exploitation of wetland resources the economic basis of the HAD V enclosure would have been more broadly based and probably more stable), parallels can be envisaged in this dynamic and the terrace’s Iron Age usage. Variously, the rapid establishment and abandonment of enclosures must equally reflect the entrepreneurialism of some individuals and the potential economic ‘pull’ of successful families (i.e. breeding patterns), as opposed to the calamity of bad years (e.g. flooding) or childless marriages.

Seeing such parallels between this century’s small holdings and the terrace’s Iron Age occupation goes far to humanize its later prehistory, and provides a settlement dynamic beyond the mechanical determinants of population pressure or economic optimization. Nevertheless, the recent passing of the terrace’s smallholdings evokes a genuine sense of loss — the passing of local knowledges, ‘placed’ names and fabric. Yet, against this apparent trauma in the countryside, new identities, social relationships and landscapes are today being forged (e.g. commuter communities), rituals re-invented (e.g. the revival
of beating of parish bounds) and the relationship of culture and nature redefined within the landscape (e.g. the establishment of wildlife reserves).

The rider escapes

It is at this point in the publication of major campaigns of investigation that disclaimers are introduced, excusing the shortcomings of their programme's results and methodologies. Ours are glaringly obvious (e.g. too little site-specific environmental study and chemical testing) and, as is invariably the case, much comes down to contingency (i.e. inadequate funding and time). Yet to some degree this is also inevitable given the demands of large-scale projects, whose publication timetables always out-strip whatever were the project's innovations in its time. Interpretation can be modified and developed after the fact, but its demonstration remains constrained by the data at hand and the methodologies of the day.

Discursive and open-ended like landscape itself, effectively this is a study without conclusion. Key themes may be highlighted, such as the dynamic of marginal lands as a setting for environmental and social incursion, the cultural evaluation of landscape, the hermeneutic of study, the necessity and inadequacy of naming, and the failure of 'complete' recovery on even wetland sites, but it is telling of the chimera of 'totalities' that, like the rider in Figure 10.4, something will inevitably escape. Social relations will always lead out beyond any research framework; there will always something more, something missing ...

Landscape and study — this choice of metaphors is not accidental. The confrontation with landscape knowledge, getting to know land in the specificity of sequence and the detail of place, is always one of humility leading to a suspicion of 'total' systems. The point of the study is how tension rather than balance is maintained between the specific, the regional and 'the grand'; the path, as it were, between the immediate continuities of a strict localism and 'world-scale' processes. Like the terrace's missing smallholders, all those who peopled the Delphs sequence had lives which led them to interact at a number of levels wherein they performed and recreated their identities. Their study is a worthy act of historical reclamation.
References

Bedwin, O., 1980. Excavations at Channonbury Ring,
References

References

References

Evans, C., 2001. Metalwork and ‘cold claylands’: pre-Iron Age occupation on the Isle of Ely, in Through Wet and
References

Gaches, L., 1903. The drainage of the Great Level (no. 3). Fenland Notes and Queries 8, 99.

Gibson, D., 1995. Excavations at West Fen Road, Ely. (Cambridge Archaeological Unit Report 498.)

Gibson, D. & M. Knight, 2002. Prehistoric and Roman Archaeology at Sionfield, King's Dyke West, Whittlesey. (Cambridge Archaeological Unit Report 498.)

Knight, D., 1984. Late Bronze Age and Iron Age Settlement in the Nene and Great Ouse Basins (British Archaeological Reports 130) Oxford: BAR.

Knight, D., 1993. Late Bronze Age and Iron Age pottery from Pennylane and Hartigans (MK 19), in Two Iron Age and Saxon Sites in Milton Keynes, by R. Williams. (Monograph 4.) Buckinghamshire Archaeology Society, 219–37.

Lane, P.J., in press. Global information, local knowledge and archaeological interpretation, in Subordinate Societies, Local Archaeologies, eds. P.J. Lane & D.A.M. Reid. London: Routledge.

References

References

Rickerson, O., 1937. *Las excavaciones en Uaxactun*. (Analectos de la Sociedad de Geografia e Historia 9.)

References

Robinson, B. & C. Duhig. 1990. Anglo-Saxon Burials at the
Three King’s Haddenham 1990. (Cambridgeshire County
Archaeology Unit Report 53.)

Rodwell, W., 1980a. Temples in Roman Britain: a revised
gazetteer, in Temples, Churches and Religion in Roman
Britain, ed. W. Rodwell. (British Archaeological

Roman Britain. (British Archaeological Reports 77.)
Oxford: BAR.

Rodwell, W., 1980c. Romano-Celtic temple architecture: how
much do we actually know?, in Temples, Churches
and Religion in Roman Britain, ed. W. Rodwell (British

Rollo, L. 1988. The shell gritted ware, in ‘Excavations at an
Iron Age and Roman enclosure at Werrington’, by D.F.

Ross, A., 1967. Pegan Celtic Britain: Studies in Iconography and

Ross, A., 1968. Shells, pits and wells: sanctuaries of the Belgic
Britons, in Studies in Ancient Europe, eds. J.M. Coles
& D.D.A. Simpson. Leicester: Leicester University
Press, 255-85.

Rostovtseff, M., 1923. Commodus-Hercules in Britain.
Journal of Roman Studies 13, 91-105.

People. London: Arnold.

Rowley-Conwy, P., 1997. Sorting the sheep from the goats,
in The Animal Bones from Avebury: Final Report,

Rozanski, K., W. Stichter, R. Gonfiattini, E.M. Scott, R.P.
Beukens, B. Kromer & J. van der Plicht. 1992. The
IAEA 14C intercomparison exercise 1990. Radiocarbon
34, 401-19.

Rudd, G. & C. Daines, 1968. A Romano-British settlement
at Brickhill Estate, Eynesbury. Proceedings of the
Cambridge Antiquarian Society 61, 15-18.

of the Black Patch Middle Bronze Age ‘Nucleated

Ryder, M.L., 1992. Iron Age, haired, animal skins from Hall-

of Chicago Press.

Sainty, J.E. A.Q. Watson & R.R. Clarke, 1938. The first
Norfolk long barrow: Interim report on excavations at
West Rudham, 1937. Norfolk Archaeology 26, 315-29.

Collins.

of Mexico: Ecological Processes in the Evolution of a

Saunders, C., 1972. The pre-Belgic Iron Age in the central and

Academic Press.

Record. Albuquerque (NM): University of New Mexico
Press.

nitrogen isotope ratios of bone collagen reflect marine
and terrestrial components of prehistoric diets. Science
216, 1381-3.

Scott, E., 1983 Appendix: Romano-British wheat yields, in
Settlement in North Britain 1000 BC-AD 1000. Papers
Presented to George Jobey, eds. J.C. Chapman & H.C.
Mytum. (British Archaeological Reports 118.) Oxford:
BAR, 221-2.

Sealey, P., 1997. The Iron Age, in The Archaeology of Essex,
ed. O. Bedwin. Chelmsford: Essex County Council,
26-68.

Serjeantson, D., 1989. Animal remains and the tanning
trade, in Diet and Crafts in Towns: the Evidence of Animal
Remains from the Roman to the Post-medieval Periods, eds.
D. Serjeantson & T. Waldron. (British Archaeological

Serjeantson, D., 1991. 'Red grasse of bones': a tapho-
nomic study of the bones from midden deposits at the
Neolithic and Bronze Age site of Runnymede, Surrey,
England. International Journal of Osteoarchaeology 1,
73-89.

Serjeantson, D., 1996. The animal bones, in Runnymede Bridge:
Research Excavations, vol. 2: Refuse and Disposal at Area
10 in East, Runnymede, by S. Needham & T. Spence.

Serjeantson, D., S. Wales & J. Evans, 1994. Fish in later
prehistoric Britain: archaeo-ichthyological studies.
Paper presented at the 6th Meeting of the I.C.A.Z. Fish
Neunmester, Wadhoul.

Serjeantson, D., M. Iles et al., forthcoming. Late Bronze Age
animal bones from the riverside zone, in Runnymede
London: British Museum Press.

1985-6. (English Heritage Archaeological Report 19.)
London: Batsford/English Heritage.

Shott, M., 1996. Mortal pots: on use life and vessel size in the
formation of ceramic assemblages. American Antiquity
61, 463-82.

Shotton, R.W., 1978. Archaeological inferences from the study
of alluvium in the Lower Severn/Avon valleys, in The
Effect of Man on the Landscape: the Landuse Zones, eds.
S. Limbery & J.G. Evans. (CBA Research Report 21.)

London: Champante & Whitrow.

Sidell, E.J., 1993. A Methodology for the Identification of
Archaeological Eggshell. Philadelphia (PA): MASCA
University of Pennsylvania.

Simonds, J.B., 1854. The Age of the Ox, Sheep and Pig. London: Orr & Co.

References

Taylor, M., in press. St Benedict's Square, the wattle fence network, in Wiford and the Brynford Pool, eds. M. Jones & A. Vince. (Lincoln Archaeological Studies.)

Taylor, M., in prep. b. The wood, in Examinations at Reading Business Park, Phase 2: A Neolithic Ring Ditch, a Middle Bronze Age Field System and Later Bronze Age Settlement, by A. Brossler, A. Boyle & R. Earley. (Thames Valley Landscape Monograph.)

Tilley, C., 1979. Post-glacial Communities in the Cambridgeshire Region. (British Archaeological Reports 66.) Oxford: BAR.

Webster, G., 1986. What the Britons required from the gods as seen through the pairing of Roman and Celtic deities and the character of votive offerings, in Pagan Gods and Shrines of the Roman Empire, eds. M. Herring & A. King. Oxford: Oxford University Committee for Archaeology, 57–64.

West, S., 1990. West Stow: the Prehistoric and Roman-British Occupations. (East Anglian Archaeology 48.) Bury St Edmunds: Suffolk County Planning Department.

Williams, R.J., 1993. *Pennylane and Hartigans.* (Buckinghamshire Archaeological Society Monograph 4.)

