Marshland communities and cultural landscapes from the Bronze Age to present day

By Christopher Evans & Ian Hodder
Marshland communities and cultural landscapes

By Christopher Evans & Ian Hodder

With contributions from
Mark Beech, Pamela Braddock, Richard Darrah, Megan Dennis, Jon Eté, Charles French, Andrew Herne, Lorrain Higbee, J.D. Hill, Caroline Humphrey, Gillian Hunt, Nicholas James, Glynis Jones, Paul Lane, Steven Laurie, Frances Lee, Anthony Legge, Gavin Lucas, Donald Mackreth, Peter Marshall, Andrew Mawson, Paul Middleton, Robert Middleton, Peter Murphy, Sylvia Peglar, Judith Pettigrew, Joshua Pollard, Francis Pryor, Richard Reece, Peter Reeves, Dale Serjeantsen, Paul Shand, Jane Sidell, Janet Simms, Pamela Smith, Marie Louise Stig Sørensen, Christopher Stevens, Yarjung Kromchain Tamu, Maisie Taylor, Lee White, David Williams, Gillian Yates & Ezra Zubrow

Principal illustrations by
Crane Begg, Marc Berger & Andrew Hall

The Haddenham Project Volume 2

Published with the aid of a grant from ENGLISH HERITAGE
CONTENTS

Vol. 2: Marshland communities and cultural landscapes

Figures v
Tables xi
Preface & Acknowledgements xvi
Summaries xxvii

Chapter 1 Introduction: Themes and Knowledges 1
- Sourcing and modelling wetlands 3
- Structuring the text 5
- Archival context and other sources 8
- Inset: John I’anson Bromwich: explorer of ‘the gloomy places’ (P. Smith) 13
- Radiocarbon determinations (P. Marshall) 15

Chapter 2 Barrow Investigations 17
- The Snow’s Farm barrow (HAD III) 18
- The buried soils (C.A.I. French) 21
- The barrow sequence 24
- Pre-barrow activity 25
- The barrow 26
- The cremation pyre 27
- Human bone (F. Lee) 28
- Secondary activities 30
- Cremated human remains (F. Lee) 33
- The pottery (J. Pollard) 35
- Worked flint (H.R. Middleton) 36
- Animal bone 36
- Metalwork 36
- Discussion 37
- Pre-barrow settlement 37
- The barrow sequence 37
- The Hermitage Farm barrow 38
- The terrace setting 38
- The barrow sequence 39
- The primary mound 40
- The long mound 43
- The oval barrow 43
- Urn group 43
- Pottery (J. Pollard) 46
- Cremated bone (F. Lee) 48
- The round barrow 50
- Later usage 51
- Pottery (J. Pollard) 52
- Worked flint (H.R. Middleton) 54
- Animal bone 54
- Discussion 54
- Sequence and chronology 54
- Inset: Active monuments: the Mergen oboos (C. Evans & C. Humphrey) 55
 - Small monument architecture 57
 - Wetland stations: later usage 58

Chapter 3 Bronze Age Usage: Landscape Sketches and Environmental Change 61
- HAD VII: a beaker pit 61
- Pottery (J. Pollard) 62
HAD VIII: the rectangular enclosure (with J. Erré) 65
 The enclosure 65
Lynchets systems 68
Discussion 70
 Losing land: sequencing the wet 71

Chapter 4 HAD IV: an Iron Age Shrine? 77
Open settlement 77
The enclosure 80
Magnetic-susceptibility survey (G. Yates) 82
Faunal remains (L. Higgins) 83
Late Bronze Age and Iron Age pottery (J.D. Hill) 87
Fired clay (G. Lucas) 92
Discussion 93

Chapter 5 The HAD V Enclosure: Constructing the Domestic 97
Coming to terms with strata: methodology 98
Natural sub-soils and topography 99
Soil micromorphology (C.A.I. French) 100
 Interpretation 101
Phasing outline 105
 Phosphates 106
 Period 1 107
 Period 2.1 112
 Period 2.2 122
Excavation themes and analyses 127
 The lessons of occupation strata 127
 Ardmark systems 129
 Pits 133
Building details 137
 Building form 137
 House resourcing (R. Darrah) 142
 Building artefact densities 142
 Floors and interior space 144
Depositional histories and middening 146
Inset: Household space and artefact inventories (P. Lane) 148–9
Iron Age pottery (J.D. Hill & P. Braddock) 152
 Methodology 154
 Chronology 156
 Fabric 157
 Vessel form and size 158
 Surface treatment and ornamentation 161
 Vessel size and function 169
 Ceramic petrology (D.F. Williams) 175
 Production and exchange 177
 Deposition and spatial analysis 178
 Comparison with other Haddenham Iron Age assemblages 188
 Style and identity: scored ware communities in the southwest fens 190
Wooden artefacts (M. Taylor) 194
Material culture: sets and assemblages 195
 Abandonment and representation 196
 ‘Organics’ and decoration: negative evidence 198
Fired clay (J. Eté & G. Lucas) 197
Inset: Gender: settlement interpretation and representation (M.L.S. Sorensen) 198–9
Worked and unworked stone (G. Lucas, P. Reeves & S. Laurie) 201
Slags (M. Dennis) 205
Small finds 206
 Brooch (D. Mackreth) 206
 Ironwork 209
Copper alloy objects 209
Bone and antler 210
Fired clay 211
Glass 211
Shale/Jet 211
Small finds distributions 211
Animal remains (D. Serjeantson) 213
Bone modification and site-formation processes 214
Mammals 217
Domestic mammals 218
Wild mammals 224
Birds 227
Eggshell (J. Sidell) 233
Fish 235
Non-anthropogenic vertebrates 239
Large molluscs 239
Distribution of bone in the settlement 239
Special animal deposits 242
Seasonality in animal resources 243
Discussion 243
Ritual structures 246
Inset: Totems, house signs and ‘booking’ common 247
Cereal processing, household space and crop husbandry (G. Jones) 248
Species represented 248
Traditional cereal processing 251
The plant samples 253
Cereal processing and the use of space 254
Cereal cultivation 254
Waterlogged plant remains (G. Hunt) 255
Discussion 256
Pollen analysis (J. Simms) 260
Discussion 261
Overview discussion: cereals — the evidence for local cultivation (G. Jones) 263
The wood assemblage (M. Taylor) 263
Overview discussion: local environment and correlation with Willingham Mere (P. Murphy) 266
Discussion 267
Phasing and chronology (with P. Marshall) 267
Household histories and dynamics 269
Spatial structures 271
Enclosure and defence: the draw of labour 274
Economy and trade 276
Representation, closure and status 277

Chapter 6 The Iron Age Landscape 281
HAD VI (with P. Shand) 281
Iron Age pottery (J.D. Hill & P. Bradock) 288
Animal remains (D. Serjeantson) 288
Other finds 291
Discussion 292
HAD VII & X 294
Environmental remains (S. Peglar) 297
Iron Age pottery (J.D. Hill) 297
Animal bone (D. Serjeantson) 299
Discussion 299
HAD IX 299
Iron Age pottery (J.D. Hill) 304
Animal bone (D. Serjeantson) 304
Discussion 305
1981 excavations 307
Flat Bridge Farm (with L. White) 308
Contents

Inset: Commerce and futures: a Midsummer Fair
Depositional rhythms, 'messages' and totalities
Ritual power and landscape

Chapter 8
The Roman Landscape

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Delphs sites</td>
<td>419</td>
</tr>
<tr>
<td>HAD II</td>
<td>419</td>
</tr>
<tr>
<td>Dating and interpretation</td>
<td>424</td>
</tr>
<tr>
<td>HADVIXI</td>
<td>425</td>
</tr>
<tr>
<td>'Outlands': the Delphs occupation</td>
<td>427</td>
</tr>
<tr>
<td>The Willingham fen-edge: Cut Bridge Farm, Willingham (with A. Herne)</td>
<td>429</td>
</tr>
<tr>
<td>Queenshorne excavations (G. Lucas & P. Middleton)</td>
<td>431</td>
</tr>
<tr>
<td>Animal bone (M. Beech)</td>
<td>435</td>
</tr>
<tr>
<td>Iron Age and Iron Age 'tradition' pottery (J.D. Hill)</td>
<td>440</td>
</tr>
<tr>
<td>Romano-British pottery (G. Lucas)</td>
<td>442</td>
</tr>
<tr>
<td>Other finds</td>
<td>443</td>
</tr>
<tr>
<td>Discussion</td>
<td>445</td>
</tr>
<tr>
<td>Romano-British pottery in the Bromwich Collection (G. Lucas)</td>
<td>446</td>
</tr>
<tr>
<td>Catastrophe and 'visibility' in the Roman fenlands</td>
<td>449</td>
</tr>
<tr>
<td>The Willingham 'edge': power and landscape</td>
<td>450</td>
</tr>
</tbody>
</table>

Chapter 9
The Landscape of 'Improvement': Post-medieval Times

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground conditions, 1550–1950 (N. James)</td>
<td>453</td>
</tr>
<tr>
<td>The Huddenham Level</td>
<td>455</td>
</tr>
<tr>
<td>Inset: The Level and History</td>
<td>460–461</td>
</tr>
<tr>
<td>Upper Delphs Settlement</td>
<td>463</td>
</tr>
<tr>
<td>Overview discussion: New Englands? (C. Evans)</td>
<td>465</td>
</tr>
</tbody>
</table>

Chapter 10
Reclamations: Communities in the Level

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic frameworks: bounding land</td>
<td>467</td>
</tr>
<tr>
<td>Ritual structures</td>
<td>468</td>
</tr>
<tr>
<td>Earthwork continuities: the place of ritual</td>
<td>470</td>
</tr>
<tr>
<td>Environmental and landscape sequences</td>
<td>472</td>
</tr>
<tr>
<td>Settlement hierarchies, community resolution and social fabric</td>
<td>475</td>
</tr>
<tr>
<td>The loss of fabric</td>
<td>476</td>
</tr>
<tr>
<td>The rider escapes</td>
<td>477</td>
</tr>
</tbody>
</table>

References

Vol. 1: A woodland archaeology (printed as a separate volume)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1 Introduction: Working Land</td>
<td>414</td>
</tr>
<tr>
<td>Chapter 2 The Foulmire Fen Terrace</td>
<td>416</td>
</tr>
<tr>
<td>Chapter 3 The Long Barrow: Transforming Wood (and Bodies)</td>
<td>417</td>
</tr>
<tr>
<td>Chapter 4 The Delphs Terraces</td>
<td>419</td>
</tr>
<tr>
<td>Chapter 5 The Causewayed Enclosure: a Great Clearance</td>
<td>424</td>
</tr>
<tr>
<td>Chapter 6 Concluding Discussion: Constructing Identities (and Landscapes)</td>
<td>427</td>
</tr>
</tbody>
</table>

References
The Assembly of Context

Preface & Acknowledgements

Extending from 1981–87, the project’s fieldwork spans the later phases of the Fenland Survey project. Originally occurring as a University of Cambridge training excavation supported by English Heritage, between 1985 and 1987 it was funded by the Manpower Services Commission (MSC), with the excavation of the Foulmire Fen long barrow being almost exclusively sponsored by English Heritage. In this capacity the support of J. Coles, G. Wainwright and P. Walker is gratefully acknowledged; H. Evans, then of Cambs. County Council, organized and provided the MSC liaison. During the course of the fieldwork, variously the support of J. Coles, G. Wainwright and P. Walker was provided by the HADD VI excavations. T. Whitehall’s and O. Bone’s perseverance in undertaking the test pit sampling programme must be gratefully acknowledged, as also should be the participation of G. Owen (photography) and C.A. Shell (surveying and geophysics) of the Dept. of Archaeology, University of Cambridge.

Concerning the production of these volumes, Evans produced the first draft of this volume, which was then amended by Hodder; in the case of the first, this process was reversed. Yet there is no intention here of trying pretend that they are ‘seamless’ or ‘interchangeable’. Each reflects the diverse interpretative interests of its prime author, viz. the interrelationship of theory/practice and long-term process/events’ or history. Books — like projects — come ‘into being’ and eventually cannot be otherwise, but hopefully these differences of approach only contribute a sense of breadth and scope to the series.

The ultimate stimulus to finally push these volumes through to completion owes much to T. Williams and P. Walker at English Heritage; with their production monitored by K. Buxton — we are sincerely grateful for their patience and support. The delay in their production can only be regretted. Their lengthy gestation has, nevertheless, proven advantageous in terms of the provision of much-needed regional site context through excavations by the Cambridge Archaeological Unit, and we are grateful for information provided by, and discussion with, many colleagues at the Unit, particularly K. Gdaniec, D. Gibson and R. Regan. In the final production of these volumes the graphic skills and computing support of C. Begg, M. Berger and A. Hall has been invaluable. The text has been read by Prof. R. Bradley, C. Cressford and N. Sharples, and we are most grateful for their comments. Beyond this, now long-term discussion and ‘mulling over of things’ with M. Edmonds, J.D. Hill, M. Knight, I. Kinnes and J. Pollard must, with pleasure, be acknowledged. Certainly to be counted amongst the latter, Gavin Lucas’s contribution to this volume must be singled out. It has been inspiring to work with him, and his insights, expertise and analytical skills underpin much of the text.
Apart from the named contributing specialists (many of whom produced on a gratis basis), we would like to thank S. Needham and I. Stead for their comments upon the project's metalwork finds; A. Challands for his identification of the Roman coins (not including the shrine's); R. Palmer and R. Bewley for matters aerial photographic; and acknowledge H. Lewis' insights concerning prehistoric ploughing regimes. The late M. de Neergaard kindly commented upon the HAD II leather. D. Haddon-Reece of the Ancient Monuments Laboratory organized and oversaw the project's radiocarbon dating. Subsequently, A. Bayliss arranged for additional radiocarbon determinations, and we are grateful for her and P. Marshall's comments upon the project's dating series, and the latter's contribution to this report.

During the course of the project's fieldwork, D. Banham sorted and made preliminary studies of the HAD V plant remains and F. Lee analyzed the Roman pottery fabrics and vessel re-fits from the Snow's Farm shrine. C.D. De Roche, J. Etté, J. Finney, R. Rippendale and B. Tilley variously used project data for dissertation topics; Finney's involved the analysis of the clay pit linings from the HAD V settlement, De Roche examined its loomweights and, supervised by M. Taylor, Tilley initially recorded its wood assemblage. Etté undertook a major study of surface artefact breakage sizes from that site and this involved a considerable fieldwork component, co-ordinating the execution of the sieved transect across the compound's interior. Rippendale was able to draw upon Etté's researches for comparative purposes when undertaking his study of pottery fragmentation from the shrine site. Their work has all been variously incorporated into relevant portions of the text that follows; we gratefully acknowledge the significance of their contributions.

Of the specialists contributing to this volume, Charles French would like to thank R.I. Macphail and the Department of Human Environment, Institute of Archaeology, London. Similarly, Glynis Jones would like to thank H. Smith, who did the initial scanning and detailed sorting of most of the flots, and D. Banham, who sorted and made preliminary identifications for some of the samples. She is also grateful to P. Halstead for reading and commenting on an earlier draft of this report. Megan Dennis would like to thank D. Stanley for his advice concerning the HAD V flots.

Mark Beech's initial analysis of the animal bones was carried out during 1987 as part of a dissertation, submitted in partial fulfilment for a Master's degree in Environmental Archaeology and Palaeoeconomy in the Department of Archaeology and Prehistory at the University of Sheffield. Both P. Halstead and G. Jones provided advice and encouragement at that time; Y. Hamilakis kindly provided assistance with the initial sorting and recording of some of the bones. Funding in 1987 was provided by a Science and Engineering Research Council (SERC) Quota Award; the text was revised in the spring of 1999. Mark is also grateful to S. Sutherland, of the Creswell Crags Visitor Centre, Notts., for her identification of the bird bone both from the shrine and also the Queenshorne assemblage; for the latter report the assistance of M. Levine and P. Halstead is also acknowledged.

Janet Simms is grateful to A. Alderton for initial encouragement and practical help with sampling, and C. Turner provided advice on methodology throughout. Identification of the pollen and spores would have been impossible without the willing help of S. Peglar and others in the Sub-Department of Quaternary Research; R. Houseley helped in the finding of the relevant archaeological reports.

Dale Serjeantson wishes to stress that her account of the Haddenham assemblages has many authors. The greatest contribution was made by the late M.A.L. Bracegirdle, who recorded a large proportion of the assemblage, and made a study of the beaver remains. The project owes much to his work. Others who made a contribution to the recording were J. Butler, P. Nicolaysen, V. Sellins, G. Shearer, H. Paterson, V. Smithson and T. Waldron. A. Cohen and J. Archer did much preliminary work on the bird bones. P. Murphy and S. Payne gave useful advice on freshwater mussels. She would, moreover, like to thank T. Legge for use of the animal bone laboratory at Birkbeck College, as well as for many good ideas. She also acknowledges gratefully the Natural History Museum Mammal, Bird and Fish Sections respectively for providing for the opportunity to confirm the identification of the beavers, birds and fish.

Andrew Herne thanks R. Jeffreys (Roman pottery) and the late M.A.L. Bracegirdle (animal bone) for their identification of the Cut Bridge Farm finds.

Pamela Smith would like to thank the Bromwich family for their co-operation in researching her biographical sketch; J. Alexander, M. Blackburn, R. Britton-Strong, M. Cra'ster, J. Cribb, H. Davidson, A. Duke, P. Grierson, S. Hallam, B. Hartley, J. Jones, V. Lane, P. Laslett, T. Nield, G. Pollard, P. Salway, G. Smith, the Cambridge English Faculty, and M. Underwood were also generous with their help.

Parts of Nick James' researches reported here were generously supported by a grant from the Scolopioudi Foundation in association with the University of London, Institute of Historical Research. C. Bester described conditions during the 1930s and
40s; and J. Mason advised on soil management in the 1940s. He is also indebted to D. Hall for advice on the land forms, to P. Filby, M. Petty and A.P.M. Wright for advice on sources, and to J. & S. Finney for help in the field. For help with documents and documentation, thanks are also due to the staff of the Cambridgeshire Record Office, the Cambridgeshire Collection (Cambridge Central Library), the Cambridge University map collection, the Public Record Office, and the British Library Manuscripts Department, and to the Chairman and Clerk of the Haddenham Level Commission. He is grateful to L. & M. Delanoy and R. Papworth for reviewing an earlier draft of this paper; and for S. Oosthuizen’s support.

Finally, in terms of dedication — this is the point at which we should thank family, kin and loved ones (respectively, Evans: Marie Louise Stig Sørensen, Megan and Kim Michael; Hodder: Christine Hastorf, Chris, Greg, Kyle and Nicky). But spanning decades as the project does, something that has involved us for so long seems to evade the personal and almost falls into a sense of disciplinary time. Therefore, on the verge of their retirement (whatever that specifically implies in their cases), for support, friendship and stimulation in the long run this accolade is bestowed on David Hall and Francis Pryor, and also Michael Church, the Hermitage Farm manager who for so long put up with so much from us.
Summary

This is the second volume outlining the results of the University of Cambridge’s seven-year-long campaign of research excavations in the marshland environs of Haddenham, Cambridgeshire along the lower fenland reaches of the River Great Ouse. The key concern is with the long-term construction of the cultural landscape, regional environmental adaptation, and the changing interrelationship and constitution of ritual/settlement over time. Matters of methodology and the archaeological process are highlighted throughout, including sampling strategies, resource and population modelling, the hermeneutics of study and the nature of sequence. Equally, amongst their main themes are community resolution, marginalization and representation, and, in order to provide broader perspectives, both volumes are punctuated by inset ‘analogical commentaries’ drawn from diverse local and international sources.

Having reported and discussed the area’s Neolithic monuments and settlements within the first volume, here the concern is its subsequent landuse history. Central to it is the Snow’s Farm barrow complex excavated in 1983. Having been superficially investigated by Bromwich in the 1950s, this saw a Romano-British shrine sited upon a Bronze Age round barrow (itself sealing traces of later Neolithic Grooved Ware occupation). Also having a later Iron Age enclosure located immediately beside it, the Snow’s Farm sequence accordingly provides the volume’s pivot. Therefore, following the description of its barrow proper (with a primary in situ cremation pyre and ten urned and unurned cremations), the sequence of the neighbouring Hermitage Farm barrow is related. The latter proved to be a complex ‘small monument’, and from it was recovered an important three-vessel Collared Urn cremation. The area’s later second millennium BC landscape ‘fragments’ — including an enclosure and lynchet system (and also a significant Beaker pit assemblage) — are then outlined and, relating to the onset of ‘wet’ conditions, the evidence of its later prehistoric environmental sequence reviewed.

Thereafter attention turns to the Iron Age landscape. In the course of the project’s fieldwork, four Middle/later Iron Age enclosures were investigated. By far the most thorough and intense of these occurred on the HAD V Riverside compound, whose surface deposits (floors, banks, etc.) were superbly preserved through subsequent flooding, and its waterlogged deep-cut features produced important wood and environmental remains. The site’s finds assemblage proved prolific, and its animal bone included a remarkably high percentage of wild species (e.g. beaver and various ‘big’ birds). Arguably relating to trade/exchange strategies and seasonal wetland resource exploitation (the marsh-proud crowns of earlier barrows being utilized to this purpose), its evidence and that of the other enclosures of the period permits uniquely detailed social and economic reconstruction concerning the establishment of wetland-specific communities.

The area’s Romano-British utilization hinges upon the Snow’s Farm shrine complex. This involved the enclosure of the upstanding barrow mound, and its primary stone-footed octagonal cella was, in later Roman times, succeeded by a series of timber post ranges focusing on a post-built shrine structure upon its crown. Although the site’s ‘conventional’ finds assemblages (e.g. metalwork and ceramics) were not especially abundant, its animal remains were outstanding. They included a series of votive carcasses and also head-and-hooves deposits (some having coins set in the mouths of sheep) and a wide array of wetland bird species. When added to the evidence of the site’s sherd/vessel distributional analyses, this allows for nuanced insights into the operations of rural shrines and, particularly, the nature of sacrifice and ritual transformation.

A sense of wider perspective is provided by a review of Bromwich’s earlier findings from the complex, especially a baton handle which matches those recovered from the renowned Willingham Fen hoard. Therefore, following comparison with other shrine sites and the reporting of the Roman agricultural enclosures (and a droveway system) also excavated during the main project, a review is made of the extensive Roman settlement and fieldsystems south along the Willingham/Over fen-edge. Not only does this include the results of subsidiary W.E.A excavations at Cut Bridge Farm and Queensholme, but also re-analysis of Bromwich’s extensive Roman Times fieldwalking collections.

The area’s post-medieval enclosure and drainage is then outlined and related to issues of (re-)colonization, the loss of landscape fabric and the broader impact of history upon these ‘marginal’ lands.
The philosophical remarks in the book are, as it were, a number of sketches of landscapes which were made in the course of these long and involved journeyings. The same or almost the same points were always being approached afresh from different directions, and new sketches made. Very many of these were badly drawn or uncharacteristic, marked by all the defects of a weak draughtsman. And when they were rejected a number of tolerable ones were left, which now had to be arranged and sometimes cut down so that if you looked at them you could get a picture of the landscape. Thus this book is really only an album. (L. Wittgenstein, preface to the Investigations 1958; emphasis added.) Wittgenstein has, in effect, been a ‘neighbour’ during the production of these volumes; he is buried in the Ascension Parish Burial Ground that lies only some 200 m north of the Cambridge Archaeological Unit’s offices alongside the University Farm fields on the west side of town.
Chapter 1

Introduction: Themes and Knowledges

The concern of this volume is with later prehistoric (post-Neolithic) and more recent landscape history: long-term interrelations within, and cultural imprinting upon, land, when the past would have been readily apparent in earthwork form. Reflecting the build-up of time, often to act in the landscape was to transgress or eradicate earlier sites. Mapping associations between sites (and even its potential corollary in the denial of interrelationship) therefore feature. While a repository of myth and association invested with stories, landscapes are not themselves stories or texts. They do not embody only one narrative, but the overlap of many — many lives and interpretations. A research area is always arbitrary and ultimately inadequate, and cultural traces will always lead outwards beyond its borders: up the Ouse, to the Midlands, Wessex, Yorkshire, the continent or wherever. The risk is to see the research area as ‘the world’ and bind up interpretation solely in terms of what was found. Though satisfactorily neat and closed in the manner of all stories, the Delphs fen-edge terraces (with which we are here primarily concerned) can be walked from end to end in less than half an hour and people must have left this ‘world’ regularly. Similarly, cultures are not closed (Boon 1982). Their ‘fixing’ is often oppositional (i.e. in relation to ‘others’) and their membership fluid. Like landscape, they are another totality that cannot be adequately pinned down. These issues are particularly relevant when dealing with fenland-scape, where much quasi-historical myth-making stands between us and its pre-historical past (i.e. that which is sealed beneath peat and silt). Archaeology must be wary of indulging in such advocacy of long-term regional character, which in the Fenland embraces archaism, isolation, an ‘out-landishness’ and notions of egalitarianism. In short, ‘backwatermess’.

Whereas the first volume of this series is essentially concerned with the Neolithic colonization of land, from the later second millennium we must be concerned with the rhythms of retreat, abandonment and return. In effect, the establishment of the fen-edge as a marginal environment. The emergence of marshland communities — when the ‘wet’ came into being and was adapted to — is, therefore, a central theme — which is not, of course, necessarily the same thing. Against this changing environmental framework, it must, however, be borne in mind that these are cultural responses to ‘the wet’. They relate to knowledge and the appreciation of risk and resources, but would not have been determined by any sense of necessary economic optimism. Just as the research frame is arbitrary, so too does the construction of a region need to be addressed. In the Fenland its implications are great and has led to a presumption of a constant ‘wet identity’. But, at least in the instance of the Delphs environs, this cannot be considered as a given. The onset of the wet is the object of study; at what time communities identified with marsh-life more than with any ‘parent’ or at least upland/up-river settlements. Even in historical times (at least post-1600 AD), if they ever existed, the lives of ‘wily semi-aquatic’ Fenlanders (as portrayed) were as much determined from the boardroom of the Bedford Level corporation as their immediate neighbours.

Throughout this text various temporalities will also be explored and time ‘problematised’. On the one hand, this involves the longue durée: rhythms of re-investiture of monument complexes, place-value association (Evans 1985) and patterns of long-term land-use sequences in general. Yet, equally, there is the sense of the ‘moment’ allowed by detailed excavation, and the two main sites described here can be considered as ‘material ethnographies’. Each reflects upon time in different ways. The extraordinary quality of the faunal assemblage and environmental data from the main Iron Age settlement (HAD V) is such that it allows us, in effect, to construct a calendar of their annual round, detailing their year and procurement sequences. The other well-preserved site, the Snow’s Farm complex, included a series of Romano-British shrines with sequences of votive animal deposits. Shrines relate to the control and ritualization of time (e.g. Bloch 1977; Turner 1974), regularizing the annual cycle, and here
Figure 1.1. Location map. Note that in main figure dark shaded swathes indicate areas of subsequent Cambridge Archaeological Unit investigations within quarries adjacent to the Haddenham research area.
the idea of the site as calendar will be explored. Finally in this vein, the concept of the ‘ethnographic moment’ of sites will be employed. Generally relating to ritual, by this is implied the sense of the ‘world-centring’ rite in which social/cultural matrices of the time are realized and their world brought into being.

This volume ends on loss. That is forgotten histories and the inundation of the landscape in post-Roman times and its subsequent post-medieval reclamation. Reclaiming land/building history — a relevant to the concept of cultural landscape, these themes have already been rehearsed in studies generated by the Haddenham material (Evans 1985; 1997a,b). Of course, given these concerns, the role of the state and its impact upon local communities looms large. The question whether the Roman fens were managed as an imperial estate and the depth of official penetration has resonance in its company-based drainage and arbitrary development in post-medieval times, which precipitated common right disputes.

Sourcing and modelling wetlands

In an earlier study the area’s wetland use during the Iron Age was contrasted with the hydraulic hypotheses, viz. the possibilities of organized environmental response (Evans 1997a). Wetlands and deserts, whilst their association is perhaps not obvious, share a cultural response to extreme environments (‘wastes’). Accordingly, the interrelationship of landscape and knowledge will also be explored throughout this volume.

By virtue of their flatness drained wetlands present, in effect, the approximation of an ‘ideal’ ground surface and certainly, buoyed by the ethos of the improvement of wastes, since post-medieval times the fens have attracted grand ‘planner’s board’ schemes. Amongst the more extraordinary are C. Dymock’s proposed ideal farms of the seventeenth century (Fig. 1.2; Grove 1981; Evans 1997b). Wonderfully concentric, they have echoes in Tilley’s attempts to apply catchment analysis to the region’s sites (Fig. 1.2; Tilley 1979). Of course, the opposite pole in Fenland studies is that of depth — a buried world — and is typified by Clark’s renowned sequence at Peacock’s Farm (Fig. 1.2; Clark et al. 1935; see also Smith 1997). Yet, in contrast to attitudes of nineteenth-century researchers (e.g. Miller & Skretchly 1878) and eighteenth-century antiquarians (e.g. Dugdale) who took the evidence of deeply submerged forests in the peats to argue that the fen was once a ‘dry and fruitful country’ and for whom the key issue was the date of its inundation, from Godwin’s research the early date of the deposition of Fen Clay at Peacock’s Farm led to a presumption that the fens were constantly wet throughout most of later prehistory. This understanding was only really re-addressed and the complexity of the region’s environmental sequence appreciated through Waller’s studies in the 1980s (1994).

Arguably the most influential wetland model remains Clarke’s study of the setting of the Glastonbury lake village on the edge of the Somerset Levels (1972). This was underpinned by precepts of 1960s geographic locational determinism and the palaeo-economy of the Higgs school (itself strongly influenced by Grahame Clark; Tilley’s uncharacteristic application of site-catchment analysis to Fenland sites in his undergraduate dissertation published in 1979 was the direct result of his being a student of David Clarke’s). Although duly criticized for the imposition of theoretical absolutes on patchy data (Coles & Minnitt 1995), Clarke presented a uniquely detailed picture of later prehistoric social organization and land use. The impact of this study cannot be over-estimated and it will be referred to on more than one occasion in this volume. Modelling the Iron Age community’s 10-km resource territory, Clarke situated Glastonbury within a local sheep-based transhumant cycle with flocks being driven up on to the Mendip slopes. In the Glastonbury paper, Arbury Camp, an Iron Age ringwork on the clay plain north of Cambridge, was cited as offering a parallel to the Mendip hillforts and (referring to John Alexander’s work) related to an inter-fenland pastoral transhumance model. Clarke’s study was thereafter drawn upon in Pryor’s Fenland research and generally the impact of transeunant modelling in Fenland archaeology has been considerable. Having indirect sympathies with the all-embracing pastoralism of an earlier generation of researchers (e.g. ‘the Age of Abraham’: Lethbridge 1950), it has subsequently proven something of a ‘catch-all’ and been used to explain almost all major site/monument types in the region, from barrows to Neolithic causewayed enclosures, Bronze Age field systems to Iron Age forts. As a result, ‘nation-wide’ and even near pan-European phenomena have, in the Fenland, been explained through environmental particularism (see Evans 1987 for overview).

There have been two main, if very different, sources for the application of transhumant modelling. The first, by direct historical analogy, is the inter-commoning of stock on distant pasture in medieval times. Involving distances of 1–15 miles (c. 5 average), this entailed the driving out of and camping with stock onto the low summer pastures from fen-edge/-hinter-
Figure 1.2. Wetland models: the flat and the deep. 1) Cressy Dymock's model of a 'considerable farm' of 100–300 acres (mss. Bodleian Library: Grove 1981, fig. 2); 2) Tilley's 10-km site-catchment ring for Shippea Hill (1979, fig. 25); 3) Peacock's Farm, Shippea Hill 1935 (after Hall & Coles 1994, fig. 4); 4) Fenland intercommoning (Darby 1940, 13); 5) The Assendelver Polder land-use model (Brandt et al. 1987, fig. 16.5).
land villages (Fig. 1.2:4; Darby 1940; Neilson 1920). The other source has been Evans-Pritchard’s renowned study of the Nuer (1940), whose landscape ‘cycling’ is conversely driven by a dry season dynamic. They must leave their main villages through a lack of water and break into small herding groups camping near sources of permanent supply. Annually forced to leave ‘home’, as opposed to exploiting the seasonal availability of a resource (wetland pasture only available in the summer), this is a very different situation than in the undrained fens; the one environmentally determined (the Nuer), the other opportunistic (the fens).

Providing a dynamic which accounts for the emptiness or blank space between disparate sites, the appeal of transhumance as an explanatory mechanism is that it allows for the connection of far-flung distribution dots. Arguably the scale of migrations envisaged has related to the distance of things/sites that require interpretative linkage and, as such, its application directly reflects upon the intensity of fieldwork and regional period settlement densities.

In many respects the Delphs approximates a concave landscape model of wetland exploitation/ location as described by Coles for the Somerset Levels (1978). This emphasizes the superabundance of wetland niches with settlement situated on lower slopes between arable plots and pasture, particularly the fertility of the seasonal ‘hangings’: the marsh-side meadows that drew summertime intercommoning of animals. However, the essential problem with many of these attempts at modelling is that they are essentially site-centred and static. Contrasting strikingly with, until of late, prevailing attitudes towards marshlands as ‘waste’, they picture these locations as more or less ‘ideal’ (e.g. Coles & Minnitt 1995: 192). The only dynamic is generated by the environment itself (seasonal flooding) and they directly link resource use and availability. Although sympathetic to the more constantly wet conditions in the Levels, there is limited conceptualization of either the cultural evaluation of environmental change or landscape itself in this approach.

The only attempt seriously to incorporate a sense of the achievement of landscape knowledge and the cultural appraisal of resources has been that generated by the Assendelver Project (Fig. 1.2:5; Brandt et al. 1984; Brandt & van der Leew 1987). In it, reconnaissance and transhumance are seen as mechanisms of investiture effectively to scout out and know land, and from which permanent settlement in drying wetlands may arise. One shortcoming of their work is that permanent settlement/seasonal usage are essentially envisaged as exclusive either/or options. In ‘niche situations’ (dry locales amid the wet) cycles of seasonal exploitation may well be maintained from dry/elevated permanently settled bases. It is in this and cultural adaptation to environmental change that the Haddenham sequence contributes to a broader understanding of wetland and later prehistoric land use in general. Within this volume land-use modelling will be attempted, but only at the most general level. Because of the limitations of the scale of the fieldwork and the above arguments as regards ‘totalities’, we will not attempt to model mathematically period/settlement densities or carrying capacities. Yes, the cognitive evaluation of landscape, but not its statistical measure.

Structuring the text

The focus of this volume’s studies is the Delphs terraces, situated immediately southeast of the junction of the River Great Ouse and peat fens (Figs. 1.1 & 1.4). While it is intended that this volume can stand independently of the first, aspects of its large-scale landscape setting and survey methodologies will be dealt with only summarily as they relate to the periods discussed here (e.g. metre test-pit sampling of the buried soils on a 50-m grid, involving 100 per cent sieved artefact recovery and phosphate/magnetic susceptibility testing; see Figs. 2.1, 2.4-2.6 & 2.15). Therefore, though as a ‘presence’ the Ouse—or at least its palaeochannel (Figs. 1.1 & 1.3)—will also snake its way through this volume, its environmental sequence is only fully outlined in Volume 1 (Chapter 2).

Whereas the emphasis of Volume 1 is on two essentially ritual sites, the later period investigations dealt with in this volume were more diffuse and fragmented. They involve two major ‘set-piece’ excavations: the Snow’s Farm Shrine complex (HAD III) and the HAD V Iron Age settlement compound. The remaining sites were largely ‘incidental’ discoveries in areas opened up so as to achieve other goals (i.e. release of early features) or only summarily investigated during testing of cropmark enclosures. To this end, there will also be ‘backgrounding’ and ‘forwarding’ of sites. The project’s results must be fully presented, but not necessarily equally, and certainly some of the enclosures that were tested can only be considered commonplace. Nevertheless, their inclusion is warranted, if for no other reason than that they provide a sense of contextual pattern for those two main sites, that for quite different reasons can only be considered extraordinary and have significant interpretative potential. In order to structure the text, the Snow’s Farm excavations will provide a narrative link. Having been caricatured as a ‘Fenland tell’, it primarily consists of a two-phased Romano-British shrine sited on top of a Bronze Age round barrow. While the recovery of Iron
Figure 1.3. Map showing the location of main environmental cores (targeted circles) and transects, with the Ouse palaeochannel indicated in grey tone.
Introduction: Themes and Knowledges

Figure 1.4. The Upper Delphs Terrace: cropmarks and areas of investigation.

Age pottery from the pre-shrine soils attests to the proximity of (and visitation from) the neighbouring HAD IV enclosure, the barrow sealed traces of later Neolithic occupation, and Mesolithic/Early Neolithic flints were also recovered from the site. Therefore spanning all the main periods with which this study is concerned, it is the Snow’s Farm sequence that provides the immediate ‘thread’ to this volume. This is all the more appropriate given that it was the only site known in the area prior to the discovery (through aerial photography) of the causewayed enclosure in the 1970s. Investigated by John Bromwich in the 1950s, and mentioned in The Fenland in Roman Times (see Bromwich, in Phillips 1970), his fieldwork on the Delphs adds a crucial historiographic dimension to our studies.

It is appropriate that the two major sites discussed in this volume, the HAD V enclosure and Snow’s Farm complex, though of different periods, are complementary. Respectively an Iron Age settlement compound and the other variously a Bronze Age mortuary centre and Romano-British shrine, amongst the themes of this volume is the changing situation of ritual and its interrelationship with the domestic. Of particular relevance here is whether during the Iron Age ritual activity was restricted to its within-settlement expression alone (e.g. human bone and other ‘special’ deposits) or if it had a discrete architectural/site component. In this, the status of HAD IV (a small Iron Age enclosure lying immediately beside the main HAD III site and considered part of the Snow’s Farm complex) is crucial. Certainly unusual in its plan and assemblages, the question arises, was it a shrine per se? It is presented in Chapter 4, and in many ways that is the pivot upon which this volume’s ensuing chapters turn (at least those up to the discussion of the ‘formal’
Romano-British shrine in Chapter 7). To this extent it is the place of ritual amid the greatly ‘abundant’, or at least the obvious, domestic record of the later Bronze and Iron Ages (and also Roman times) that is a key concern of this volume. Though risking caricature, this is opposed to the focus of Volume 1 and the Neolithic record, where it is the situation (and detection) of the domestic that requires problematization, its ritual constructions being so readily apparent.

This volume differs from the first in the scale of its data. We are dealing here with substantial assemblages and, in two notable instances, very prolific and complicated sites. In order to present the results, extensive reference must be made to specific features and, accordingly, there needs to be greater employment of diverse numerical systems. In an attempt to maintain some sense of flow, these are kept to a minimum (the archive is not being duplicated) and where possible feature citation alone will be made (F.no.), not their constituent stratigraphic contexts ([no.]; <no.> indicates finds catalogue entry). (Note that the project’s grid, to which site as opposed to ‘landscape’ descriptions are related, unless otherwise indicated was oriented 33.5° east of true north.)

Continuing to employ a device initiated in the first volume, various analogies (ethnographic and historical) and other ‘commentaries’ are inset into the text by way of introducing indirect parallels and emphasizing key themes. Whatever their source, their aim is to broaden discussion beyond the immediate localism of the Fenland sequence. In other words, paraphrasing Sahlins (1987, and John Donne), ‘no terrace is an island’.

Archival context and other sources

In order to provide a sense of ‘depth’ of landscape practice it is appropriate to introduce this volume with Bromwich’s day-book entries (see opposite) concerning his work at the Snow’s Farm complex in
In Introduction: Themes and Knowledge

UD.1 G. Wright TL/4097 37
6 inch Cambs xxxvii southeast C.A.S. Site No. 3
1/2500 Cambs xxxviii 12
Haddenham 932 (80 ac)

Geology: First Gravel Terrace.

2044 shows the centre of this field east of Snow's Farm unflooded. This photo also shows a rectangular mark where RB finds were made later.

Gt. Ouse Catchment Board spot heights:
41007373 O. D. 11.1 ft
40957398 O. D. 8.4 ft
41377379 O. D. 8.9 ft
41167353 O. D. 10.0 ft.

1953 July 18. Mr Bester found RB sherds, a first brass and a brooch which were not Roman. The rectangle mentioned above showed up well as a soil-mark after deep ploughing.

1953 July 23. APH. Nos. 19 and 20 showed a (circular) mark within the irregular rectangle. July 25. APH. Nos. 11 and 14 ditto not so clear.

1953 July 25 and 26. Section cut up open furrow, through southern ditch of rectangle and both ditches of circle within which the majority of the ploughed up surface finds had been made. This section called UD.1a. A feature, either side of outer sandy bank, was made of Ampthill clay, which could have been dug in S. E. corner of field (Found by Holmes or Geology Survey by boring). This sealed an illegible third brass coin. Section in graph book.

1953 July 27 APH. No. 15 shows mark made by this section.

1953 Oct. 25. APH. No. 15 badly exposed.

1953 Oct. 4. Three more sherds from area of circle within square. 40917372. Round mark on APH to east of field yielded modern china.

1953 Dec. 3. With Holmes of the Geology Survey picked up more rims and bases at 40917372. He picked up a (?barbarous) radiate. At 40737363 Ampthill clay came up from 4 feet with his auger.

1954 Jan. II. A bronze pin bent nearly at right angles and a few more sherds from within the black circle at 40917372.

1955 Nov. 3. Sherds and a tile from area 40917372.

1957 Sept. Mr Bester gave long bronze object X brought further (?) to measure from this site.

Analysis of clay samples from Mr J. Bromwich.

A. With pot fragment marked UD1. Grey-brown silt with silica, and mineral clay. Organic matter common. Sand grains both rounded and angular indicating reworked and freshly weathered sand. No reaction with HCl. Flints present.

B. Granular medium textured sand. Little or no clay. Some organic matter present. CaCO3 present giving a moderate to strong reaction with HCl. Sand grains both angular and rounded.

C. Sand similar to that described under B. but containing monaxon sponge spicules and a little organic material. Positive reaction to HCl.

D. Dense brown organic clay with very little silica. Structureless. No micro-organisms. No reaction with HCl.

TH. Black silty organic peat or peaty mud, composed of amorphous brown organic material with a trace of angular and rounded sand. Odd macro flint present. No HCl reaction.

E. Dark grey mixture of organic material and silica in about equal proportions. Silica rounded and freshly angular. Several macro flints present. No reaction with HCl.

Note. Samples B. and C. suggest deposition in a fresh water lake with marl forming somewhere in the near vicinity.

Sample A could be a soil.

Samples D. to F. suggest alluvial clay of fresh-water origin, associated with the development of peat.

Without knowing their stratigraphic relationship it is difficult to give a more sensible appraisal of their origin.

D. M. Churchill.
1952-4 (‘Site 4073’, in Phillips 1970), held in St John’s College Library and the County Council Record Office, Cambridge, his archive offers a unique perspective upon the region’s archaeology. As is clear from his remarkably complete sketch plan (Fig. 1.7), he did much more than just fieldwalk sites in the vicinity, but investigated them at the time of their first ploughing when the fields were being taken out of pasture. In the case of the Snow’s Farm site, he evidently cut a sondage along an open furrow, sectioning the compound’s ditch (from which we retrieved one of his milk bottles) and what later proved to be the interior of the shrine. Thereafter, he and his colleagues returned to the site during subsequent ploughings and were able to recover a quantity of finds, though unfortunately not all can be located today (full discussion of Bromwich’s findings will be made in Chapter 7).

Providing a sense of ‘local voice’, to this can be added a description of our 1983 excavations that Charles Bester appended to his manuscript text, Haddenham: a Parish History (1981), held in the Cambridgeshire Collection of the Central Public Library, Cambridge:

Following the 1983 harvest a party of archaeologists and students from Cambridge excavated the site near Snow’s Farm, which is situated at the south west corner of an area called the Upper Delphs, farmed by A.G. Wright and Son. This land is slightly higher than the surrounding fenland and without doubt it was an island before the fens were drained in the 17th century.

The peaty soil here is very shallow, and the prehistoric surface only a few inches below the cultivated soil.

The surface soil was removed, and a remarkable series of occupations by early man was uncovered. Firstly a ditch about six feet deep and five feet wide was found which enclosed a square shaped enclosure in which Roman pottery, coins, pins or brooches were discovered. Within this enclosure was a small octagonal enclosure, surrounded by a ditch, which had been used as a sacrificial place or temple.

Burnt bone of sheep or goats had been scattered around, and several complete skeletons of sheep or goats, evidently prepared and laid out for sacrifice, were placed in the centre of the temple area. Evidence of human burials were found nearby, and also cremation pits containing human remains.

The deep ditch around this site, with the gravelly clay from the ditch thrown inwards to make a bank, made a very strong defence, especially if topped by a wooden fence, of which no evidence was found.

This deep ditch was filled with peaty soil, no doubt deposited by the recurring flood waters which regularly swept down the nearby river valley from the highlands which now comprise the Ouse catchment area.

Below this Roman settlement traces of Iron Age occupation were found, around which was another ditch, which had been filled with a gravelly deposit, again without doubt brought from the highlands by river floods. This ditch had been completely filled by gravel before the peat formation period, and the spoil from the river valley could easily be seen in contrast to the gravelly clay of the Delph area.

Evidence of earlier occupation was confirmed by the discovery of several Stone Age implements, so on this site we find a sequence of human activity from Stone Age, Iron Age, and the Roman period, interspersed with heavy flooding from upland waters, to fen reclamation and modern farming.

It is interesting to conjecture that when Abraham was preparing to sacrifice his son Isaac, and eventually found a lamb caught in a mountainside thicket, our ancient forbears were preparing for similar rituals on a site in Haddenham Fen.

Bester, who (with his daughter) was Bromwich’s sometime assistant in the course of his Fenland researches, became a local historian of renown and the sizeable collection of fieldwalking material he kept at his home in Haddenham has, since his death, been transferred to Ely Museum. His text is not reproduced here in any kind of ‘knowing irony’. His and Bromwich’s fieldwalking efforts established a foundation for work along the southwestern fen-edge which the Fenland Survey 30 years later was able to build upon.

In his text Bester is unequivocal that the early inhabitants of the area were ‘forebears’ of today’s populace. Elsewhere in the manuscript there is great emphasis (verging on wonderment) upon the emergence of monuments from out of the peat. In this and its allusions to diverse sources (such as the Biblical parallel above), his writings can be seen as akin to a folkloric tradition and are not unlike the accounts of nineteenth-century antiquarians in the region (see Volume 1, Introduction; Evans 1997b). As an informed layman, ultimately this is about making sense of ‘fragments’ and the provision of interpretative context, no matter how far-flung their sources.

Similarly, a recent piece by the late Ernest Papworth, local village historian of Over (who excavated with Simpson at the site of Cold Harbour Farm), emphasizes the relationship between archaeology and a lost environment. Rehearsing a number of regional stereotypes (e.g. semi-amphibious inhabitants, the fear of ‘vapours’ and malaria), the passing of the wild fens has been a theme of regional commentators since the early nineteenth century (arguably attributable to the marked loss of habitat through the advent of steam pump drainage). Yet, however obliquely, in this case he actually writes in reference to the results of the recent Needingworth quarry excavations (Evans &
Introduction: Themes and Knowledges

Knight 2000; 2001) and the possibility that after extraction the land across much of the north side of the village will be restored to a nature reserve:

OUR PROUD FEN

What did our old Fen look like 'in the days of yore', before the Great Drainage scheme of the 17th century, and even long before that?

Looking across from Le Bury Holme towards the river and southwards it would have resembled, especially in winter, a great vast lake studded with numerous small proud islands just above the waters surface; fringed with tall rustling reeds, willows, waterlily's, marsh plants and many types of aquatic vegetation.

Today's transformation gives no idea of the vastness of this great mere and its ancient flora which covered the land, now yielding fruitful crops with only the odd name to remind us of those far distant days.

This now well-drained land no longer supports the abundance of fish and wildfowl, and in particular the great quantity of eels from which the nearby city of Ely took its name.

Thankfully so has gone the Fen Ague, the fevers, malaria, rheumatics and deplorable conditions which these earlier Fen Edge peoples had to endure.

All the low ground was uninhabitable, and in any case believed to be haunted, it was a very brave and foolish man who ventured into this huge and hideous environment on a dark and cold winters night.

The fog and 'dark vapours' which rolled in from the river created mysterious shapes, enough to put fear into the most stout-hearted, if there was any place for the Devil to dwell it would most certainly be here.

It is therefore not surprising that they were called 'Half-Savages', trying to survive in this semi-aquatic life as they waded, swam and poled their flat-bottom boats from one island to another.

There is still however a certain sadness, even today in watching the destruction of the present fen, though in all conscience we know that it is necessary and right to change this once howling wilderness into benefits which we will all enjoy.

Maybe, one day in the not too distant future we will once more have golden-reed beds, a variety of waterfowl, numerous dragon-flies and gaudy winged insects, with great pike swimming beneath overhanging dark-green willows, heronshaws standing like unemployed curates in the shallow's and lighter green reeds swaying in a gentle breeze. Fidgety coots jerk their way across the waters, and perhaps the return of the Bittern to hear its distinctive boom as it stretches its long neck heavenwards, letting everyone know of its presence and territory.

High above this idyllic scene the lone Hawk or Kestrel hovers, its sharp eye detecting a small timid water vole, followed by a steep dive and in its sharp claws lifting the doomed animal away to the distant trees on the higher ground.

This action disturbed the terrified wild-fowl as the piped and clacked in small groups, suddenly the air was filled with the crackle and clatter of their wings as they raced across the waters to become quickly airborne, bringing forth another even louder boom from the startled bittern, and

Figure 1.6. A landscape liable to flood (RAF photograph of 1947 floods). Standing proud of the water level and visible in earthwork form are the Snow's Farm barrow/shrine (A) and the Cut Bridge Farm complex (B; see Chapter 8); water sits in the ditch profile of the HAD V Iron Age enclosure (C; see Chapter 5) and another riverside enclosure to the east (D).
Figure 1.7. Snow's Farm, 1953. 1 & 2) Bromwich notebook sketches with those to left showing early stages of plough-exposure; A-B on '1' is registered to north-south 'furrow line' on '2' (cf Fig. 7.2; Cambs. County Council Record Office); 3) left, contemporary aerial photograph (?) by Bromwich) owned by Charles Bester that clearly shows the plough-exposed outline of the site; right, verso.
John Fanson Bromwich: explorer of ‘the gloomy places’
by P.J. Smith

John Bromwich (1915–90), Fellow of St John’s and then Wolfson College, Cambridge, is remembered as an eccentric, meticulous, perfectionist ‘man of parts’ and ‘scholar of minor fields’, who cultivated life-long enthusiasms for philology, numismatics and fieldwalking. According to his own description, Bromwich (1956) spent ‘thirty years umbrella poking in the Fens’, during which he carried a ‘great weight of potsherds back to Cambridge, mostly by bicycle’ (1970, 125). He had been introduced to the study of fen topography and extinct waterways as a boy growing up in Cambridge by the local archaeologist and geologist, Gordon Fowler. He took First Class Honours in Cambridge University’s Archaeological and Anthropological Tripos in 1937, with a thesis on ‘Population and Economics in the Southern Fens’. Following graduation he became a Scholar of St John’s for 1937–38, was awarded a College Research Grant for 1938–39, and received a Goldsmiths’ Senior Studentship to begin postgraduate work at Cambridge, studying the ‘development of the vocabulary of the English language from Anglo-Saxon to Middle English’.

In September 1939, Bromwich, who had a distinguished career in the Officer Training Corps as a student, was commissioned into the Middlesex Regiment and was recognized as an expert in the mathematically precise use of machine guns. First stationed guarding the London docks, he was later posted to Egypt and then to the British Military Mission in Greece. Major Bromwich was demobbed in 1946, suffering from partial deafness and shell-shock. According to his family, he never recovered from the War, remaining psychologically frail until he died.

Bromwich began teaching ‘The History of the English Language’ for the Cambridge English Faculty in 1947. In 1949 he was appointed to a University Assistant Lectureship, offering papers in Middle English, Norse and Anglo-Saxon, and in the same year was elected to a Fellowship at St John’s. By 1956 Bromwich was a University Lecturer in the English Faculty, a position he continued to hold until retirement in 1982. Unfortunately, he struggled recurrently with ill health and found it difficult to complete his philological studies.

His sanctuary seems to have been the fens. Mary Cra’ster, former Assistant Curator in the Museum of Archaeology and Anthropology, remembers (pers. comm.) that Bromwich ‘got on very well with the local farmers’, enjoyed chatting in pubs and therefore quickly knew of possible artefacts or sites found by residents. Others interviewed add that Bromwich, knowledgeable in geology, archaeology and waterways, was most happy when in the Fen. ‘For many many years, after the War, Bromwich assiduously, systematically, precisely recorded anything there was to find in the area north-west of Cambridge ... he would ring at 6.30 on a Sunday morning’ to ask Roman pottery specialist, Brian Hartley (pers. comm.) to join him fieldwalking. According to Hartley, Bromwich admired and often quoted Fox’s Archaeology of the Cambridge Region (1923), using it as his main inspiration. Bromwich successfully applied Fox’s topographical mapping approach to a concentrated geographical area.

Figure 1.8. Bromwich, punting on the Cam in 1947. Fascinated by local waterways since boyhood, he spent many hours exploring the fens calling them ‘the gloomy places’ (pers. comm., Mrs Bromwich; photograph courtesy of Mrs Bromwich).

Sylvia Hallam of the University of Western Australia was introduced to Fenland field survey methods by John Bromwich when she was a Cambridge research student in 1949 and employed his methods in her extensive investigation of Roman settlement in Lincolnshire. She remembers that he was concerned about the casualness of Fox’s maps (pers. comm.) which he felt were not sufficiently precise. Rather than Fox’s 1-inch per mile scale, Bromwich used 6” Ordnance Survey maps, introduced an exact method of documenting find locations by pared field measurements and carefully transferred the field information to an accurate card catalogue.

Bromwich retreated into fantasy as he aged, sadly becoming increasingly eccentric in his behaviour, and he was no longer able to collect Fenland artefacts for the Museum. Moving to Cram in 1982, he died on 25 December 1990.
Table 1.1. Radiocarbon determinations.

<table>
<thead>
<tr>
<th>Site</th>
<th>Laboratory number</th>
<th>Context Material</th>
<th>Radiocarbon determinations</th>
<th>13C ratio (‰)</th>
<th>15N (‰) Calibrated date (95% confidence)</th>
<th>Calibrated date (95% confidence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAD III HAR-6176</td>
<td>1072</td>
<td>Charcoal, unidentified</td>
<td>3950±90 - 25.0</td>
<td>-</td>
<td>2580-2300 cal. BC</td>
<td>2540-2140 cal. BC</td>
</tr>
<tr>
<td>HAD III HAR-6181</td>
<td>1004</td>
<td>Charcoal, unidentified</td>
<td>3810±70 - 25.2</td>
<td>-</td>
<td>2400-2140 cal. BC</td>
<td>2470-2320 cal. BC</td>
</tr>
<tr>
<td>HAD III HAR-6177</td>
<td>1033</td>
<td>Charcoal, remaining</td>
<td>3190±70 - 25.1</td>
<td>-</td>
<td>1520-1400 cal. BC</td>
<td>1600-1310 cal. BC</td>
</tr>
<tr>
<td>HAD III HAR-6179</td>
<td>1060</td>
<td>Charcoal, unidentified</td>
<td>2700±90 - 27.4</td>
<td>-</td>
<td>970-790 cal. BC</td>
<td>1050-870 cal. BC</td>
</tr>
<tr>
<td>Hermitage BM-2497</td>
<td>2172</td>
<td>Human child inhumation</td>
<td>3420±45 - 21.9</td>
<td>-</td>
<td>1740-1530 cal. BC</td>
<td>1830-1610 cal. BC</td>
</tr>
<tr>
<td>HAD V HAR-8764</td>
<td>2655</td>
<td>Charcoal, remaining</td>
<td>2110±70 - 27.1</td>
<td>-</td>
<td>350-10 cal. BC</td>
<td>370 cal. BC</td>
</tr>
<tr>
<td>HAD V HAR-8766</td>
<td>2735</td>
<td>Large twigs</td>
<td>1990±60 - 27.3</td>
<td>-</td>
<td>80 cal. BC</td>
<td>170 cal. BC</td>
</tr>
<tr>
<td>HAD V HAR-8767</td>
<td>1635/1679</td>
<td>Long twigs</td>
<td>1970±50 - 28.5</td>
<td>-</td>
<td>110 cal. BC</td>
<td>140 cal. BC</td>
</tr>
<tr>
<td>HAD V HAR-10513</td>
<td>3764</td>
<td>Wood, desiccated wood, previously waterlogged,</td>
<td>2110±90 - 28.0</td>
<td>-</td>
<td>350-10 cal. BC</td>
<td>390 cal. BC</td>
</tr>
</tbody>
</table>

Many feet below the present level of this land, on the gravels once lived fair Kelts and Bronze Age peoples in their primitive huts, burying their dead in large round Barrows; living where they could on the higher islands.

Today we are discovering their relics of the past and preserving them for future generations, as we perhaps sit silently beneath the vast tablecloth of a typical fen sky; can we therefore pause and remember how this old Fen has given us sustenance for countless centuries; let us enjoy it and honour it and pay it the respect it deserves.

But will it ever again be the silent fen of solitude and quietness, or will the clean air be filled with the pollution of car engines, the over-loud transistors.

an enquiring glance from a pair of otters as they shared a large eel on the sandy slopes.

Pairs of dainty snipe will return to dart and break away in opposite directions when disturbed, brilliant butterflies will rest on the tall reeds beneath summer suns, this time their will be no more typhus or diseases for the children, no more forced sips of opium for their parents to alleviate the insistent pain and dull the mind, living longer to tell their grandchildren of happy days in this new man-made fen. Firm roads will replace the handmade canoes and boats, beauty will reach in all directions, this is no place for the Devil any longer with its shady groves, tall trees and in the distance Sutton 'Pepper Box' standing out for all to see.
with their selfish cacophony of noise, the barking of unattatched dogs and the ever persistent barbecue to drive away the birds to spoil for everyone the paradise which was the very reason why they came in the first place, perhaps not; like dear old Mr. Gladstone we ‘Must wait and see!’ (24.11.98 in Over Exposed no. 114)

Certainly jarring with any sense of scientific practice, do such accounts as the latter two have any place in a modern site report? Both provide a sense of ‘traditional’ village voice in their commentary upon recent excavations. Greatly concerned with local identity, they act to counterpoint and, in some respects, echo these volumes’ ethnographies. It is this emphasis, the need for a narrative of immediate relevance, that primarily distinguishes their accounts from more academically informed texts. Particularly relevant in Papworth’s piece is the ethos of archaeology revealing a hidden marshland past, but which has long been known to be there. In the same way that Bester draws upon Biblical precedent, this is about fitting results into established frameworks of knowledge, an issue of obvious relevance to any programme of investigation. Finally, the emphasis on change and succession in the countryside within the latter contribution is a theme that will be returned to in this volume’s final discussion.

Radiocarbon determinations
by P. Marshall

Thirteen radiocarbon determinations have been obtained on samples from Haddenham Project sites relating to this volume. The Harwell Laboratory processed ten samples between 1988-1990, two samples were processed by the British Museum between 1982-1987, and one by the Oxford Radiocarbon Accelerator Unit in 1999. The principal aims of the dating programme were to:

1) date the sites and establish their temporal relationships in the landscape;
2) date the construction of structures.

Prior to submission for dating, wood and charcoal samples were not routinely identified as either short-lived species or of roundwood or sapwood. Subsequent examination of a sub-sample of material remaining from some of the original samples submitted for radiocarbon analysis has resulted in HAR-6177, HAR-8764, and HAR-8766 being identified as predominantly oak heartwood. Thus these are affected by an unknown age-at-death offset (Bowman 1990) with respect to the archaeological events they were used to date. The remaining sub-sample of HAR-10513 was mainly unidentified bark and thus, assuming that it was not residual material, should relate to the initial silting of the ditch at HAD IX. No material remained from HAR-
and the age offset is therefore unknown, but all are older than their contexts by an unknown amount.

Radiocarbon analysis and quality assurance

The 10 samples processed at Harwell were pre-treated using the acid-alkali-acid process (Mook & Waterbolk 1985, 36-7). The samples were then combusted to carbon dioxide and synthesized using a method similar to that initially described by Tamers (1965) and a vanadium-based catalyst (Otlet 1977). The radiocarbon content was measured using liquid scintillation counting as described by Otlet (1979).

The bone sample processed at Oxford was prepared and measured using methods outlined in Hedges et al. (1989) and Bronk Ramsey & Hedges (1997). The pre-treatment method was a collagen extraction (Law & Hedges 1989; Hedges et al. 1989) followed by gelatinization and separation by filtration (Bronk Ramsey et al. 2000).

The wood-bark sample processed at the British Museum (1982-1983) was pre-treated with dilute acid and alkali (Ambers et al. 1987) and the charcoal sample (1986-1987) with 1 M HCL, followed by washing in water and a dilute alkali for the removal of humic acids (Ambers et al. 1989). The radiocarbon content of both samples was measured by liquid scintillation counting of benzene using the procedures outlined in Burleigh et al. (1976).

All three laboratories maintained a continual programme of quality assurance in addition to participating in international inter-comparisons (Rozanski et al. 1992). These tests indicate no significant offsets and demonstrate the validity of the precision quoted.

Results and calibration

The radiocarbon results are given in Table 1.1, and are quoted in accordance with the international standard known as the Trondheim convention (Stuiver & Kra 1986). They are conventional radiocarbon ages (Stuiver & Polach 1977).

The radiocarbon determinations have been calibrated using the maximum intercept method of Stuiver & Reimer (1986) with data from Stuiver et al. (1998) and are quoted in the form recommended by Mook (1986) with end points rounded outwards to 10 years. Ranges are quoted at 95 per cent confidence unless otherwise specified and have been calculated using OxCal v3.5 (Bronk Ramsey 1995, 1998). The probability distributions (Fig. 1.9) are derived from the usual probability methods (Stuiver & Reimer 1993; Dehling & van der Plicht 1993). The estimated date ranges quoted in italics are derived from the mathematical modelling of the archaeological chronology and are posterior density estimates.

The results of stable isotope analyses undertaken at Oxford on the one bone sample dated are shown in Table 1.1. The $\delta^{13}C$ value of -20.0‰ and $\delta^{15}N$ value of 12.0‰ are consistent with a very largely terrestrial diet, with only a minor component of marine protein (Chisholm et al. 1982; Mays 2000; Schoeninger et al. 1983). The C:N ratio suggests that bone preservation was sufficiently good to have confidence in the radiocarbon determination (Masters 1987; Tuross et al. 1988).

Figure 1.10. Section conventions.
The raw material and quality of flaking tended to be poorer than the later material from the causewayed enclosure. A high percentage of flakes were broad flakes and a high percentage of cores had broad flake scars. Yet a small number of blades were also found and a significant number of cores had blade scars. This would suggest a predominantly Late Neolithic assemblage with a significant earlier Neolithic component. The implement evidence supports this view. Utilized flakes (19%) and retouched flakes (25%) are common and both broad flake and blade forms occur. Scrapers are common (20%) and similar numbers are long and short. Of the four arrowheads found, three were transverse and one was leaf-shaped. All the knives were broad flakes; notched flakes (11%), burins (5%), piercers (3%), a serrated flake and a fabricator were also found.

In summary, all stages of the core reduction were found but a special emphasis seems to have been placed on initial core working. Flaking and implement production also occurred. The range of artefacts was wide, suggesting a broad range of activities in addition to core working, and the implement:by-product ratio was high (1:8).

Animal bone

Identified by M. Beech, very much as a sub-set of the main HAD III assemblage (see Chapter 7 below), only some 40 bones were recovered from this period of the site's usage.

Little can be said of such a minor assemblage. Although cattle and cattle/horse-sized bone predominate, horse and sheep/goat only occurred in the mound deposits and some of these pieces (e.g., the sheep) may even have been 'introduced' into the subsequent ground surface during the course of later activity (Roman, see below).

Metalwork

Examined and described by Dr. S. Needham, a copper alloy spearhead tip was recovered by metal detectors from the site's ploughsoil (Fig. 2.14:7):

Table 2.6. Snow's Farm barrow (HAD III): animal bone.

<table>
<thead>
<tr>
<th>Species</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow</td>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>Sheep/goat</td>
<td>11</td>
<td>27.5</td>
</tr>
<tr>
<td>Horse</td>
<td>2</td>
<td>5.0</td>
</tr>
<tr>
<td>Cow/horse-sized</td>
<td>15</td>
<td>37.5</td>
</tr>
<tr>
<td>Pig-roe/fallow deer-sized</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>Unidentified</td>
<td>6</td>
<td>15.0</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>100</td>
</tr>
</tbody>
</table>

36